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Global medium-range weather forecasting is critical to decision-making across many social and economic
domains. Traditional numerical weather prediction uses increased compute resources to improve forecast
accuracy, but does not directly use historical weather data to improve the underlying model. Here, we
introduce “GraphCast,” a machine learning-based method trained directly from reanalysis data. It predicts
hundreds of weather variables, over 10 days at 0.25° resolution globally, in under one minute. GraphCast
significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification
targets, and its forecasts support better severe event prediction, including tropical cyclones tracking,
atmospheric rivers, and extreme temperatures. GraphCast is a key advance in accurate and efficient
weather forecasting, and helps realize the promise of machine learning for modeling complex dynamical

systems.

It is 05:45 UTC in mid-October, 2022, in Bologna, Italy, at the
European Centre for Medium-Range Weather Forecasts
(ECMWF)s new High-Performance Computing Facility,
which recently opened for operation. For the past several
hours the Integrated Forecasting System (IFS) has been run-
ning sophisticated calculations to forecast Earth’s weather
over the next days and weeks, and its first predictions have
just begun to be disseminated to users. This process repeats
every six hours, every day, to supply the world with the most
accurate weather forecasts available.

The IFS, and modern weather forecasting more generally,
are triumphs of science and engineering. The dynamics of
weather systems are among the most complex physical phe-
nomena on Earth, and each day, countless decisions made by
individuals, industries, and policymakers depend on accurate
weather forecasts, from deciding whether to wear a jacket or
to flee a dangerous storm. The dominant approach for
weather forecasting today is “numerical weather prediction”
(NWP), which involves solving the governing equations of
weather using supercomputers. The success of NWP lies in
the rigorous and ongoing research practices that provide in-
creasingly detailed descriptions of weather phenomena, and
how well NWP scales to greater accuracy with greater com-
putational resources (I, 2). As a result, the accuracy of
weather forecasts has increased year after year, to the point
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where the path of a hurricane can be predicted many days
ahead—a possibility that was unthinkable even a few decades
ago.

But while traditional NWP scales well with compute, cap-
italizing on the vast amount of historical weather data to im-
prove accuracy is not straightforward. Rather, NWP methods
are improved by highly trained experts innovating better
models, algorithms, and approximations, which can be a
time-consuming and costly process.

Machine learning-based weather prediction (MLWP) of-
fers an alternative to traditional NWP, where forecast models
can be trained from historical data, including observations
and analysis data. This has potential to improve forecast ac-
curacy by capturing patterns in the data which are not easily
represented in explicit equations. MLWP also offers opportu-
nities for greater efficiency by exploiting modern deep learn-
ing hardware, rather than supercomputers, and striking
more favorable speed-accuracy trade-offs. Recently MLWP
has helped improve on NWP-based forecasting in regimes
where traditional NWP is relatively weak, for example sub-
seasonal heat wave prediction (3) and precipitation nowcast-
ing from radar images (4-7), where accurate equations and
robust numerical methods are not as available.

In medium-range weather forecasting, i.e., predicting at-
mospheric variables up to 10 days ahead, NWP-based systems
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like the IFS are still most accurate. The top deterministic op-
erational system in the world is ECMWEF’s High RESolution
forecast (HRES), a configuration of IFS which produces
global 10-day forecasts at 0.1° latitude/longitude resolution,
in around an hour (&). However, over the past several years,
MLWP methods for medium-range forecasting trained on re-
analysis data have been steadily advancing, facilitated by
benchmarks such as WeatherBench (&). Deep learning archi-
tectures based on convolutional neural networks (9-1I) and
Transformers (I2) have shown promising results at lati-
tude/longitude resolutions coarser than 1.0°, and recent
works—which use graph neural networks (GNN), Fourier
neural operators, and Transformers (I13-16)—have reported
performance that begins to rival IFS’s at 1.0° and 0.25° for a
handful of variables, and lead times up to seven days.

GraphCast

Here we introduce an MLWP approach for global medium-
range weather forecasting called “GraphCast,” which pro-
duces an accurate 10-day forecast in under a minute on a sin-
gle Google Cloud TPU v4 device, and supports applications
including predicting tropical cyclone tracks, atmospheric riv-
ers, and extreme temperatures.

GraphCast takes as input the two most recent states of
Earth’s weather—the current time and six hours earlier—and
predicts the next state of the weather six hours ahead. A sin-
gle weather state is represented by a 0.25° latitude/longitude
grid (721 x 1440), which corresponds to roughly 28 x 28 km
resolution at the equator (Fig. 1A), where each grid point rep-
resents a set of surface and atmospheric variables (listed in
Table 1). Like traditional NWP systems, GraphCast is auto-
regressive: it can be “rolled out” by feeding its own predic-
tions back in as input, to generate an arbitrarily long
trajectory of weather states (Fig. 1, B and C).

GraphCast is implemented as a neural network architec-
ture, based on GNNs in an “encode-process-decode” configu-
ration (I3, 17), with a total of 36.7 million parameters (code,
weights and demos can be found at https://github.com/deep-
mind/graphcast). Previous GNN-based learned simulators
(18-20) have been very effective at learning the complex dy-
namics of fluid and other systems modeled by partial differ-
ential equations, which supports their suitability for
modeling weather dynamics.

The encoder (Fig. 1D) uses a single GNN layer to map var-
iables (normalized to zero-mean unit-variance) represented
as node attributes on the input grid to learned node attrib-
utes on an internal “multi-mesh” representation.

The multi-mesh (Fig. 1G) is a graph which is spatially ho-
mogeneous, with high spatial resolution over the globe. It is
defined by refining a regular icosahedron (12 nodes, 20 faces,
30 edges) iteratively six times, where each refinement divides
each triangle into four smaller ones (leading to four times
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more faces and edges), and reprojecting the nodes onto the
sphere. The multi-mesh contains the 40,962 nodes from the
highest resolution mesh (which is roughly 1/25 the number
of latitude/longitude grid points at 0.25°), and the union of
all the edges created in the intermediate graphs, forming a
flat hierarchy of edges with varying lengths.

The processor (Fig. 1E) uses 16 unshared GNN layers to
perform learned message-passing on the multi-mesh, ena-
bling efficient local and long-range information propagation
with few message-passing steps.

The decoder (Fig. 1F) maps the final processor layers
learned features from the multi-mesh representation back to
the latitude-longitude grid. It uses a single GNN layer, and
predicts the output as a residual update to the most recent
input state (with output normalization to achieve unit-vari-
ance on the target residual). See supplementary materials
section 3 for further architectural details.

During model development, we used 39 years (1979-2017)
of historical data from ECMWF’s ERA5 (21) reanalysis ar-
chive. As a training objective, we averaged the mean squared
error (MSE) between GraphCast’s predicted states over N au-
toregressive steps and the corresponding ERA5 states, with
the error weighted by vertical level (see supplementary mate-
rials eq. 19). The value of ¥ was increased incrementally from
1to 12 (i.e., six hours to three days) over the course of training
and the gradient of the loss was computed by backpropaga-
tion-through-time (22). GraphCast was trained to minimize
the training objective using gradient descent which took
roughly four weeks on 32 Cloud TPU v4 devices using batch
parallelism. See supplementary materials section 4 for fur-
ther training details.

Consistent with real deployment scenarios, where future
information is not available for model development, we eval-
uated GraphCast on the held out data from the years 2018
onward (see supplementary materials section 5.1).

Verification methods

We verify GraphCast's forecast skill comprehensively by com-
paring its accuracy to HRES’s on a large number of variables,
levels, and lead times. We quantify the respective skills of
GraphCast, HRES, and ML baselines with two skill metrics:
the root mean square error (RMSE) and the anomaly correla-
tion coefficient (ACC).

Of the 227 variable and level combinations predicted by
GraphCast at each grid point, we evaluated its skill versus
HRES on 69 of them, corresponding to the 13 levels of Weath-
erBench (8) and variables (23) from the ECMWF Scorecard
{24); see boldface variables and levels in Table 1 and supple-
mentary materials section 1.2 for which HRES cycle was op-
erational during the evaluation period. In addition to the
aggregate performance reported in the main text, supplemen-
tary materials section 7 provides further detailed evaluations,
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including other variables, precipitation, regional perfor-
mance, latitude and pressure level effects, spectral properties,
blurring, biases, comparisons to other ML-based forecasts,
and effects of model design choices.

In making these comparisons, two key choices underlie
how skill is established: (i) the selection of the ground truth
for comparison, and (ii) a careful accounting of the data as-
similation windows used to infer this data from observations.
We use ERA5 as the ground truth for evaluating GraphCast,
since it was trained to take ERA5 data as input and predict
ERA5 data as outputs. However, evaluating HRES forecasts
against ERA5 would result in nonzero error on the initial
forecast step. Instead, we constructed an “HRES forecast at
step 0” (HRES-fc0) dataset to use as ground truth for HRES.
HRES-fcO contains the inputs to HRES forecasts at future in-
itializations (see supplementary materials section 1.2), ensur-
ing that each data point is grounded by recent observations
and that the zeroth step of HRES forecasts will have zero er-
ror.

For a fair comparison, we must ensure that the ERA5 ini-
tial conditions for GraphCast were derived from assimilation
windows which look no further into the future than those
used by HRES. HRES initializations (00z/06z/12z/18z, where
00z means 00:00 UTC in Zulu convention) always assimilate
observations 3 hours into the future while ERA5 initializa-
tions assimilate observations 9 hours into the future at
00z/12z and 3 hours into the future at 06z/18z. This con-
strained the choice of initialization times for GraphCast to
06z/18z in all our results. We use the same initializations for
HRES when comparing performance up to 3.75 days. Beyond
that, HRES archived forecasts are only available from 00z/12z
initializations. The transition from 06z/18z to 00z/12z initial-
izations for HRES induces a small discontinuity in our plots
that is indicated by a vertically dashed line at the appropriate
lead time. Supplementary materials section 5 contains fur-
ther verification details, including details of the comparisons
protocol between GraphCast and HRES (supplementary ma-
terials section 5.2), and the effect of initialization lookahead
on both models’ performance (supplementary materials sec-
tion 5.2.2).

Forecast verification results

We find that GraphCast has greater weather forecasting skill
than HRES when evaluated on 10-day forecasts at a horizon-
tal resolution of 0.25° for latitude/longitude and at 13 vertical
levels.

Figure 2, A to C, shows how GraphCast (blue lines) out-
performs HRES (black lines) on the Z500 (geopotential at 500
hPa) “headline” field in terms of RMSE skill, RMSE skill score
(i.e., the normalized RMSE difference between model A and
baseline B defined as (RMSE, - RMSER)/{RMSEg), and ACC
skill. Using Z500, which encodes the synoptic-scale pressure
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distribution, is common in the literature, as it has strong me-
teorological importance (8). The plots show GraphCast has
better skill scores across all lead times, with a skill score im-
provement around 7%-14%. Plots for additional headline var-
iables are in supplementary materials section 7.1.

Figure 2D summarizes the RMSE skill scores for all 1380
evaluated variables and pressure levels, across the 10-day
forecasts, in a format analogous to the ECMWF Scorecard.
The cell colors are proportional to the skill score, where blue
indicates GraphCast had better skill and red indicates HRES
had higher skill. GraphCast outperformed HRES on 90.3% of
the 1380 targets, and significantly (p < 0.05, nominal sample
size n €{729, 730}) outperformed HRES on 89.9% of targets.
See supplementary materials section 5.4 for methodology and
table S4 for p-values, test statistics and effective sample sizes.

The regions of the atmosphere in which HRES had better
performance than GraphCast (top rows in red in the score-
cards), were disproportionately localized in the stratosphere,
and had the lowest training loss weight (see supplementary
materials section 7.2.2). When excluding the 50 hPa level,
GraphCast significantly outperforms HRES on 96.9% of the
remaining 1280 targets. When excluding levels 50 and 100
hPa, GraphCast significantly outperforms HRES on 99.7% of
the 1180 remaining targets. When conducting per region eval-
uations, we found the previous results to generally hold
across the globe, as detailed in figs. S14 to S16.

We found that increasing the number of autoregressive
steps in the MSE loss improves GraphCast performance at
longer lead time (see supplementary materials section 7.3.2).
It also encourages GraphCast to blur to a degree at longer
lead times (see fig. S38), which means its forecasts will lie
somewhere in between a traditional deterministic forecast,
and an ensemble mean. HRES’s underlying physical equa-
tions, however, do not lead to blurred predictions. To assess
whether GraphCast’s relative advantage over HRES on RMSE
skill is due to blurrier forecasts better optimizing RMSE, we
artificially blurred HRES’s forecasts with blurring filters. We
fit filters for GraphCast and HRES by minimizing the RMSE
between filtered predictions and the models’ respective
ground truths. We found that RMSE-optimized blurring ap-
plied to GraphCast has greater skill than analogous blurring
applied to HRES on 88.0% of our 1380 verification targets,
which is generally consistent with our above conclusions (see
supplementary materials section 7.4). Still, blurrier forecasts
may not be desirable for some applications, which we discuss
further in the Conclusions section.

We also compared GraphCast’s performance to the top
competing ML-based weather model, Pangu-Weather (i6),
and found GraphCast outperformed it on 99.2% of the 252
targets they presented (see supplementary materials section
6 for details).
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Severe event forecasting results

Beyond evaluating GraphCast’s forecast skill against HRES’s
on a wide range of variables and lead times, we also evaluate
how its forecasts support predicting severe events, including
tropical cyclones tracks, atmospheric rivers, and extreme
temperature. These are key downstream applications for
which GraphCast is not specifically trained, but which are
very important for human activity.

Tropical cyclone tracks

Improving the accuracy of tropical cyclone tracking can help
avoid injury and loss of life, as well as reducing economic
harm (25). A cyclone’s existence and trajectory is predicted by
applying a tracking algorithm to forecasts of geopotential (2},
horizontal wind (10U/10V, U/V), and mean sea-level pressure
(MSL). We implemented a tracking algorithm based on
ECMWZF’s published protocols (26) and applied it to
GraphCast’s forecasts, to produce cyclone track predictions
(see supplementary materials section 8.1). As a baseline for
comparison, we used the operational tracks obtained from
HRES’s 0.1° forecasts with ECMWZF’s own tracker, stored in
the TIGGE archive (27, 28). Each model using the tracker
leading to its best performance, we measured errors for both
models against the tracks from IBTrACS (29, 30), a separate
reanalysis dataset of cyclone tracks aggregated from various
analysis and observational sources. Consistent with estab-
lished evaluation of tropical cyclone prediction (26), we eval-
uate all tracks when both GraphCast and HRES detect a
cyclone, ensuring that both models are evaluated on the same
events, and verify that each model’s true-positive rates are
similar.

Figure 3A shows GraphCast has lower median track error
than HRES over 2018-2021 (median was chosen to resist out-
liers). As per-track errors for HRES and GraphCast are corre-
lated, we also measured the per-track paired error difference
between the two models and found that GraphCast is signifi-
cantly better than HRES for lead time 18 hours to 4.75 days,
as shown in Fig. 3B. The error bars show the bootstrapped
95% confidence intervals for the median (see supplementary
materials section 8.1 for details).

Atmospheric rivers

Atmospheric rivers are narrow regions of the atmosphere
which are responsible for the majority of the poleward water
vapor transport across the mid-latitudes and generate 30%-
65% of annual precipitation on the U.S. West Coast (31). Their
strength can be characterized by the vertically integrated wa-
ter vapor transport IVT (32, 33), indicating whether an event
will provide beneficial precipitation or be associated with cat-
astrophic damage (34). IVT can be computed from the non-
linear combination of the horizontal wind speed U and 1)
and specific humidity (@), which GraphCast predicts. We
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evaluate GraphCast forecasts over coastal North America and
the Eastern Pacific during cold months (Oct-Apr), when at-
mospheric rivers are most frequent. Despite not being specif-
ically trained to characterize atmospheric rivers, Fig. 3C
shows that GraphCast improves the prediction of IT'T com-
pared to HRES, from 25% at short lead time, to 10% at longer
horizons (see supplementary materials section 8.2 for de-
tails).

Extreme heat and cold

Extreme heat and cold are characterized by large anomalies
with respect to typical climatology (3, 35, 36), which can be
dangerous and disrupt human activities. We evaluate the skill
of HRES and GraphCast in predicting events above the top
2% climatology across location, time of day, and month of the
vear, for 2T at 12-hour, 5-day, and 10-day lead times, for land
regions across northern and southern hemisphere over their
respective summer months. We plot precision-recall curves
{37) to reflect different possible trade-offs between reducing
false positives (high precision) and reducing false negatives
(high recall). For each forecast, we obtain the curve by vary-
ing a “gain” parameter that scales the 27T forecast’s deviations
with respect to the median climatology.

Figure 3D shows GraphCast’s precision-recall curves are
above HRES’s for 5- and 10-day lead times, suggesting
GraphCast’s forecasts are generally superior than HRES at
extreme classification over longer horizons. By contrast,
HRES has better precision-recall at the 12-hour lead time,
which is consistent with the 27T skill score of GraphCast over
HRES being near zero, as shown in Fig. 2D. We generally find
these results to be consistent across other variables relevant
to extreme heat, such as 7850 and Z500 (36), other extreme
thresholds (5%, 2% and 0.5%), and extreme cold forecasting
in winter. See supplementary materials section 8.3 for details.

Effect oftraining data recency
GraphCast can be re-trained periodically with recent data,
which in principle allows it to capture weather patterns that
change over time, such as the effects of climate change, and
long climate oscillations. We trained four variants of
GraphCast, from scratch, with data that always began in 1979,
but ended in 2017, 2018, 2019, and 2020, respectively (we la-
bel the variant ending in 2017 as “GraphCast: <2018,” etc.).
We compared their performances to HRES on 2021 test data.
Figure 4 shows the skill scores (normalized by
GraphCast:<2018) of the four variants and HRES, for Z500.
We found that while GraphCast’s performance when trained
up to before 2018 is still competitive with HRES in 2021,
training it up to before 2021 further improves its skill scores
(see supplementary materials section 7.1.3). We speculate this
recency effect allows recent weather trends to be captured to
improve accuracy. This shows that GraphCast’s performance
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can be improved by re-training on more recent data.

Conclusions

GraphCast’s forecast skill and efficiency compared to HRES
shows MLWP methods are now competitive with traditional
weather forecasting methods. Additionally, GraphCast’s per-
formance on severe event forecasting, which it was not di-
rectly trained for, demonstrates its robustness and potential
for downstream value. We believe this marks a turning point
in weather forecasting, which helps open new avenues to
strengthen the breadth of weather-dependent decision-mak-
ing by individuals and industries, by making cheap predic-
tion more accurate, more accessible, and suitable for specific
applications.

With 36.7 million parameters, GraphCast is a relatively
small model by modern ML standards, chosen to keep the
memory footprint tractable. And while HRES is released on
0.1° resolution, 137 levels, and up to 1 hour time steps,
GraphCast operated on 0.25° latitude-longitude resolution,
37 vertical levels, and 6 hour time steps, because of the ERA5
training data's native 0.25° resolution, and engineering chal-
lenges in fitting higher resolution data on hardware. Gener-
ally GraphCast should be viewed as a family of models, with
the current version being the largest we can practically fit
under current engineering constraints, but which have po-
tential to scale much further in the future with greater com-
pute resources and higher resolution data.

One key limitation of our approach is in how uncertainty
is handled. We focused on deterministic forecasts and com-
pared against HRES, but the other pillar of ECMWEF’s IFS, the
ensemble forecasting system, ENS, is especially important for
quantifying the probability of extreme events and as the skill
of the forecast decreases at longer lead times. The non-line-
arity of weather dynamics means there is increasing uncer-
tainty at longer lead times, which is not well-captured by a
single deterministic forecast. ENS addresses this by generat-
ing multiple, stochastic forecasts, which approximate a pre-
dictive distribution over future weather, however generating
multiple forecasts is expensive. By contrast, GraphCast’s MSE
training objective encourages it to spatially blur its predic-
tions in the presence of uncertainty, which may not be desir-
able for some applications where knowing tail, or joint,
probabilities of events is important. Building probabilistic
forecasts that model uncertainty more explicitly, along the
lines of ensemble forecasts, is a crucial next step.

It is important to emphasize that data-driven MLWP re-
lies critically on large quantities of data and their quality,
which in the case of models trained on reanalysis, depends
on the fidelity of NWPs. Therefore, rich high-quality data
sources like ECMWTF’s MARS archive (38) are invaluable. Our
approach should not be regarded as a replacement for tradi-
tional weather forecasting methods, which have been
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developed for decades, rigorously tested in many real-world
contexts, and offer many features we have not yet explored.
Rather our work should be interpreted as evidence that
MLWP is able to meet the challenges of real-world forecast-
ing problems and has potential to complement and improve
the current best methods.

Beyond weather forecasting, GraphCast can open new di-
rections for other important geo-spatiotemporal forecasting
problems, including climate and ecology, energy, agriculture,
and human and biological activity, as well as other complex
dynamical systems. We believe that learned simulators,
trained on rich, real-world data, will be crucial in advancing
the role of machine learning in the physical sciences.
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Table 1. Weather variables and levels modeled by GraphCast. The numbers in parentheses in the column head-
ings are the number of entries in the column. Boldfaced variables and levels indicate those which were included in
the scorecard evaluation. All atmospheric variables are represented at each of the pressure levels.

Surface variables (5) Atmospheric variables (6) Pressure levels (37)
2-m temperature (2T) Temperature (T) 1,2, 3,5,7, 10, 20, 30, 50, 70,
10 m u wind component (10U) U component of wind (U) 100, 125, 150, 175, 200, 225,
10 m v wind component (10V) V component of wind (V) 250, 300, 350, 400, 450, 500,
Mean sea-level pressure (MSL) Geopotential (2) 550, 600, 650, 700, 750, 775,
Total precipitation (TP) Specific humidity (Q) 800, 825, 850, 875, 900, 925,
Vertical wind speed (W) 950, 975, 1000
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a) Input weather state b) Predict the next state c) Roll out a forecast
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Fig. 1. Model schematic. (A) The input weather state(s) are defined on a 0.25° latitude-longitude grid
comprising a total of 721 x 1440 =1,038,240 points. Yellow layers in the closeup pop-out window represent the
5surface variables, and blue layers represent the 6 atmospheric variables that are repeated at 37 pressure levels
(5 + 6 x 37 = 227 variables per point in total), resulting in a state representation of 235,680,480 values.
(B) GraphCast predicts the next state of the weather on the grid. (C) A forecast is made by iteratively applying
GraphCast to each previous predicted state, to produce a sequence of states which represent the weather at
successive lead times. (D) The Encoder component of the GraphCast architecture maps local regions of the
input (green boxes) into nodes of the multi-mesh graph representation (green, upward arrows which terminate
in the green-blue node). (E) The Processor component updates each multi-mesh node using learned message-
passing (heavy blue arrows that terminate at a node). (F) The Decoder component maps the processed multi-
mesh features (purple nodes) back onto the grid representation (red, downward arrows which terminate at a
red box). (G) The multi-mesh is derived from icosahedral meshes of increasing resolution, from the base mesh
(M°, 12 nodes) to the finest resolution (M®, 40,962 nodes), which has uniform resolution across the globe. It
contains the set of nodes from M® and all the edges from MY to M®. The learned message-passing over the
different meshes’ edges happens simultaneously, so that each node is updated by all of its incoming edges. The

Earth texture in the figure is used under CC~BY~4.0 from https://www.solarsystemscope.com/textures/.
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a) Skill (RMSE): z500 b) Skill score (RMSE): 2500 c) Skill score (ACC): z500
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Fig. 2. Global skill and skill scores for GraphCast and HRES in 2018. (A) RMSE skill (y-axis) for GraphCast
(blue lines) and HRES (black lines), on 7500, as a function of lead time (x-axis). Error bars represent 95%
confidence intervals. The vertical dashed line represents 3.5 days, which is the last 12-hour increment of the
HRES 06z/18z forecasts. The black line represents HRES, where lead times earlier and later than 3.5 days are
from the 06z/18z and 00z/12z initializations, respectively. (B) RMSE skill score (y-axis) for GraphCast versus
HRES, on 7500, as a function of lead time (x-axis). Error bars represent 95% confidence intervals for the skill
score. We observe a discontinuity in GraphCast's curve because skill scores up to 3.5 days are computed
between GraphCast (initialized at 06z/18z) and HRES's 06z/18z initialization, while after 3.5 days skill scores
are computed with respect to HRES's 00z/12z initializations. (C) ACC skill (y-axis) for GraphCast (blue lines)
and HRES (black lines), on 7500, as a function of lead time (x-axis). (D) Scorecard of RMSE skill scores for
GraphCast, with respect to HRES. Each subplot corresponds to one variable: U, V., Z, T, Q, 2T, 10U, 10V, MSL,
respectively. The rows of each heatmap correspond to the 13 pressure levels (for the atmospheric variables),
from 50 hPa at the top to 1000 hPa at the bottom. The columns of each heatmap correspond to the 20 lead
times at 12-hour intervals, from 12 hours on the left to 10 days on the right. Each cell’'s color represents the skill
score, as shown in (B), where blue represents negative values (GraphCast has better skill) and red represents
positive values (HRES has better skill).
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a) Cyclone tracking c) Atmospheric river (ivt) skills
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Fig. 3. Severe-event prediction. (A) Cyclone tracking performances for GraphCast and HRES. The
x-axis represents lead times (in days), and the y-axis represents median track error (in km). Error
bars represent bootstrapped 95% confidence intervals for the median. (B) Cyclone tracking paired
error difference between GraphCast and HRES. The x-axis represents lead times (in days), and the
y-axis represents median paired error difference (in km). Error bars represent bootstrapped 95%
confidence intervals for the median difference (see supplementary materials section 8.1).
(C) Atmospheric river prediction (/VT) skills for GraphCast and HRES. The x-axis represents lead
times (in days), and the y-axis represents RMSE. Error bars are 95% confidence intervals.
(D) Extreme heat prediction precision-recall for GraphCast and HRES. The x-axis represents recall,
and the y-axis represents precision. The curves represent different precision-recall trade-offs when
sweeping over gain applied to forecast signals (see supplementary materials section 8.3).
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Fig. 4. Training GraphCast on more recent data. Each colored line
represents GraphCast trained with data ending before a different
year, from 2018 (blue) to 2021 (purple). The y-axis represents RMSE
skill scores on 2021 test data, for 7500, with respect to GraphCast
trained up to before 2018, over lead times (x-axis). The vertical
dashed line represents 3.5 days, where the HRES 06z/18z forecasts
end. The black line represents HRES, where lead times earlier and
later than 3.5 days are from the 06z/18z and 00z/12z initializations,
respectively.
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