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ABSTRACT: Machine learning (ML) is increasingly valuable for predicting molecular properties and toxicity in drug discovery.
However, toxicity-related end points have always been challenging to evaluate experimentally with respect to in vivo translation due
to the required resources for human and animal studies; this has impacted data availability in the field. ML can augment or even
potentially replace traditional experimental processes depending on the project phase and specific goals of the prediction. For
instance, models can be used to select promising compounds for on-target effects or to deselect those with undesirable characteristics
(e.g., off-target or ineffective due to unfavorable pharmacokinetics). However, reliance on ML is not without risks, due to biases
stemming from nonrepresentative training data, incompatible choice of algorithm to represent the underlying data, or poor model
building and validation approaches. This might lead to inaccurate predictions, misinterpretation of the confidence in ML predictions,
and ultimately suboptimal decision-making. Hence, understanding the predictive validity of ML models is of utmost importance to
enable faster drug development timelines while improving the quality of decisions. This perspective emphasizes the need to enhance
the understanding and application of machine learning models in drug discovery, focusing on well-defined data sets for toxicity
prediction based on small molecule structures. We focus on five crucial pillars for success with ML-driven molecular property and
toxicity prediction: (1) data set selection, (2) structural representations, (3) model algorithm, (4) model validation, and (5)
translation of predictions to decision-making. Understanding these key pillars will foster collaboration and coordination between ML
researchers and toxicologists, which will help to advance drug discovery and development.

■ INTRODUCTION

In recent years, machine learning (ML) approaches for toxicity
prediction using chemical structures and sometimes additional
data sources have attracted widespread interest, particularly in
drug discovery.1 There are constant innovations in ML for
investigating biological systems and understanding their
interactions with drugs, resulting in therapeutic activity and/or
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adverse outcomes. Still, these improvements must be reflected in
practice. Currently, the costs of bringing a drug to market are
increasing,2 while the overall success rates in clinical drug
development remain poor.3 ML models can be trained on data
from empirical assays to predict the properties of compounds
from molecular structure (see Box 1 for standard definitions for
ML related to predictive models for molecular toxicity). These
models are often termed Quantitative Structure Activity/
Property Relationship (QSAR/QSPR) models. By enabling
the assessment and triage of compound toxicity prior to
synthesis and physical testing, these approaches can streamline
the drug discovery and development process. Rapid in silico
screening procedures allow a larger number of potential
candidates to be assessed in a shorter time and at decreased cost.

ML models can be used to predict compound properties
including efficacy, toxicity (both on-target and off-target
biology), and Absorption, Distribution, Metabolism, and
Excretion (ADME) or Pharmacokinetic (PK) properties. On-
target toxicity occurs when a drug affects its intended target and
this itself causes adverse effects, while off-target toxicity arises
from interactions of the drug with unintended biological
targets.4 Certain PK properties and dosing schedules can help
mitigate on-target toxicity by optimizing how the drug is
absorbed, distributed, metabolized, and excreted, effectively
controlling its exposure levels. Moreover, more potent
compounds with favorable pharmacokinetic properties often
requires smaller doses to achieve the desired efficacy. This
reduction in the level of necessary exposure can decrease the
likelihood of off-target toxicity, thereby improving the overall
benefit-risk profile of the drug. Therefore, efficacy and PK/
ADME properties drive target engagement and, thus, potential
toxicity, all three need to be combined to arrive at a human-
relevant toxicity estimation.

For ML-based QSAR/QSPR models, chemical structures of
compounds are usually the basis for predictions of continuous
(numerical) or categorical labels (properties) biologically
relevant to toxicity.5 In addition to predictive models, recent
advancements in generative models have emerged as powerful
tools for designing novel chemical structures while optimizing
for properties like low toxicity.6 This Perspective consolidates
insights from both academia and industry on the application of
ML models across various stages of drug discovery�ranging
from early screening and alert systems in hit identification to
compound optimization. We focus on discussing the role of ML
models in predicting in vitro toxicity assays, in vivo animal study
outcomes, and human-relevant toxicity throughout the drug
discovery process.

■ CHALLENGES IN TRANSLATING PRECLINICAL
TOXICITY DATA TO HUMAN-RELEVANT
PREDICTIONS

In the early stages of drug discovery, High-Throughput Screens7

(HTSs) are commonly applied to screen extensive chemical
libraries and find compounds with potential efficacy against a
target or phenotype of interest (on-target effects), albeit with
some arguments for8 and against9 its efficiency. Screens can be
cellular or cell-free (isolated protein), with the former testing
some aspects of permeability that the latter does not consider.
After identifying hits, molecules are optimized to enhance their
potency, selectivity, and ADME properties. Usually, in vitro
assessment of toxicity, including off-target screens, are not
conducted in a high-throughput manner; at early screening
phases, unless there is an obvious off target activity, selective

secondary-pharmacology screens are often run in multiple
‘waves’.10,11

In later stages of the drug discovery pipeline, in vitro human
and in vivo animal data are used to predict human-relevant
toxicity, which is the ultimate goal. However, though widely
used, these have shown variable accuracy. For instance, in vitro
assays have been reported to detect only 50−60% of rare and
idiosyncratic drug-induced liver injury (DILI) cases in
humans,12 while animal models often fail to fully capture
human-specific toxicity due to species differences in drug
metabolism and response.13−16 While studies in preclinical
species can give insights into the drug’s effects on a whole
organism, they have significant drawbacks. These in vivo models
are also expensive and not scalable and raise ethical concerns.
Therefore, there is a growing desire for alternative models that
can more closely mimic human physiology. Complex models
using human cells, such as ex vivo tissue slices and in vitro
primary cells or spheroids/organoids, are increasingly used in an
attempt to better predict human responses to drugs and decrease
animal use in line with the FDA modernization act 2.017−19 and
related regulations worldwide. There is ongoing work on New-
Approach Methodologies (NAMs) that avoid animals for early
screening and gaining regulatory acceptance;20 over 250
regulatory-relevant NAMs have been proposed (https://nams.
network/explore). These advancements align with the FDA
Harmonization Act and the 3Rs (Replacement, Reduction, and
Refinement) principles, which advocate for reducing the need
for animal testing and instead opting for more ethical and
scalable alternatives.18 Tissue slices, spheroid or organoid
models are usually more physiologically relevant than traditional
2D cultured cancer-derived cell lines. For example, HepaRG, a
human hepatic in vitro cell line, is widely used because it closely
mimics primary human hepatocytes.21 These cells retain
essential functions, such as major cytochrome P450 (CYP)
enzymes, key phase 2 enzymes, nuclear receptors, and
transporters, making them a valuable tool for studying hepatic
drug metabolism and toxicity. However, they do not recapitulate
the three-dimensional (3D) structure of the organ and some
other aspects; hence a push toward the more expensive tissue
slices or spheroids/organoids.22 Overall, progress in replacing
animal testing with human-based NAMs has advanced
significantly.23

Many toxicity hurdles that slow down the development
process are detected in animal experiments rather than in the
less-expensive initial screening stages.24 This underscores the
urgent need for more reliable ML models for preclinical safety
assessments. Since animal data remains a critical factor in
determining a compound’s viability, predicting human findings
using animal data will remain critical in the near term. Still,
advancing toward methods that offer better understanding,
more predictive power, and cost-effectiveness represents clear
scientific progress. By integrating in vitro systems with advanced
omics technologies and ML, there is potential to reduce the
reliance on animal testing. The key challenge lies in
recapitulating biological complexity to improve predictivity,
which is needed for better decision making.25 Therefore, models
that integrate PK/ADME with toxicity and predict in vitro to in
vivo translation, or animal-to-human translation could accelerate
drug discovery26,27 by incorporating interspecies and intersex
toxicodynamic and toxicokinetic properties.28,29 Prioritizing
such translational models may bridge the gap between in vitro or
animal data and human data, enabling faster, cost-effective
development of safer and more effective medicines.
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■ GUIDELINES FOR ML-BASED TOXICITY MODELS
For the use of ML-based models in drug discovery, model
reliability is key. Deprioritization of compounds with undesired
properties and progression of those without any early risk flags
requires decision-making based on ML models. To ensure the
credibility of QSAR/QSPR models, the Organisation for
Economic Co-operation and Development (OECD) has
defined five principles for model validation.30,31 These include:
(i) a defined end point, (ii) an unambiguous algorithm, (iii) a
defined domain of applicability (in terms of chemical
structures), (iv) appropriate measures of goodness-of-fit,
robustness, and predictivity, and (v) a mechanistic interpreta-
tion, if possible. These five principles serve as a foundational
framework for evaluating the quality and reliability of QSAR/
QSPR models in regulatory contexts, ensuring that predictions
are applicable to real-world scenarios. A complementary set of
four guidelines was recently proposed for using ML models for
ADME/PK for small molecule lead optimization.32 They
include frequently retraining models using data sets from
multiple sources (global data) as well as new experimental data
(local data), and ensuring models are interactive, interpretable,
and integrated into chemists’ tools. Bender et al. propose a
general set of guidelines for the development and evaluation of
ML tools, particularly focusing on supervised learning.33 Their
guidelines emphasize the importance of comprehensive data
reporting, conducting retrospective evaluations, comparing
models against baselines, performing prospective testing, and
ensuring a thorough model interpretation. Additionally, they
provide specific recommendations for reporting standards and
evaluation metrics, aiming to enhance the reliability and
applicability of ML models in addressing real-world chemical
challenges.

The risks of reliance on ML include the potential for
inaccurate or mis-calibrated models to select drug candidates
with undesirable properties, including safety risks. Mis-
calibration, here, refers to when the model predicted
probabilities do not accurately reflect the true likelihood of
observed outcomes. Mis-calibrated models can be a result of (a)
low information content (Box 1) in the feature space being used
to train models, (b) exposure to narrow chemical space in
training data, which then leads to a narrow applicability domain

(because of overfitting of models to a small chemical space), or
(c) improper (and often nonexistent) prospective validation of
models (for future projects), which can lead to overoptimizing
and deployment of models that do not generalize.

Building on these principles in the context of ML-driven drug
discovery, in this work, we propose five critical pillars for success
using ML tools for toxicity prediction (Figure 1):

1. Selecting appropriate data sets that accurately represent
the toxicity of interest ensures that model predictions are
relevant.

2. Chemical structures must be encoded into relevant
representations that capture essential molecular ‘informa-
tion’ to generate ML-ready features.

3. Model algorithms must be suitable to learn the signal in
the data and representation characteristics mentioned
above.

4. Models must be validated to assess their predictive
performance, both retrospectively and prospectively,
within their applicability domain.

5. In practical model applications, it is crucial to consider
project scenarios and desired outcomes to facilitate real-
world drug discovery and development.

Adopting these five pillars would enhance the translatability
and reliability of predictive models in toxicity prediction,
potentially accelerating the design of safe and effective
therapeutic candidates. In the subsequent sections, we provide
a detailed examination of these five pillars.

When predicting toxicity, there is typically limited data
available for the specific end point of interest. Although human
toxicity prediction is the ultimate goal, animal studies are more
common than in humans and can provide granular information,
including dose response, time response, and target organ
characterization. Recently, one of the largest data set with in vivo
toxicity data for 80,000 compounds against a total of 59 acute
systemic toxicity end points was analyzed by Sosnin et al. and
later made publicly available by Jain et al.43,44 However, in vivo
data is only available at advanced stages of compound
characterization and in vitro data is used for early screening.
Thus, in vitro assays correlate with one or multiple aspects of the
end point of interest, but they are not the in vivo relevant end point
itself. Due to data availability, training data sets for ML models
very often include data from such experimental in vitro assays
that typically proxy for a human clinical end point (Figure 2a).
Where mechanisms are better understood, well-studied proxy
assays can be used, hence leading to both better predictivity and
better interpretability (Figure 2b).45,46 For example, these could
involve functional or binding assays for proteins involved in
known mechanisms of toxicity (for example, human ether-a-go-
go-related, hERG channel inhibitors in cardiotoxicity47 or
imaging screens for organelle toxicity such as mitochondrial
membrane depolarization48,49). Hence, the situation differs
from case to case quite significantly, where better mechanistic
understanding is present different (e.g., target-based) assays
might be employed; but in either case the prediction of in vivo
relevant toxicity is the goal (as opposed to just assay labels), in
order to arrive at a prediction in the end that can be used for real-
world decision making.

■ CHOOSING RELEVANT (PREDICTIVE) ASSAY END
POINTS FOR IN VIVO TOXICITY

An ideal proxy end point strongly predicts the phenotype
observed in humans. The design or selection of proxy end points

Chart Box 1
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requires careful consideration to ensure reliability, trans-
latability, and relevance to the application area the model’s

predictions aim to serve.50 For example, an assay commonly
used to gauge a common cardiotoxicity mechanism detects

Figure 1. Five critical pillars deserving attention from researchers using ML tools for toxicity prediction are discussed in this review. Pillar 1: Choice of
data end points, data sets, and data preparation.

Figure 2. (a) The general criteria when choosing the in vitro or in vivo assay as a proxy end point that could represent human toxicity learned by an ML
model. (b) The choice of proxy end point will influence what the model learns and whether mechanistic insights are possible.

Table 1. Commonly Used In Vitro Assays That Can Be Used as Proxies for Human-Relevant Toxicity End Pointsa

Toxicity Assays for Proxy End points Comment
Commonly Used Data sets in Published

Predictive Models

Hepatotoxicity HepG2 cell viability assays, CYP inhibition
assays,62 mitochondrial membrane depola-
rization, transporter and reactive metabolite
assays

Assess liver function and potential for liver damage
through cell viability and enzyme inhibition

Gates Library screen for HepG2 cell viability,63

CYP P450 Inhibition64

Cardiotoxicity Human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs) assays,65

hERG, Nav1.5, and Cav1.2 assays

Evaluate effects on cardiac cells and potential for
arrhythmia through cardiac cell function and ion
channel activity

qHTS for Inhibitors of hERG,66 hERGCen-
tral67

Nephrotoxicity Kidney proximal tubule cell assays,68,69 HK-2
cell cytotoxicity assays68,69

Assess kidney cell damage and function, focusing on
tubule cells and cytotoxicity

in vitro models based on HK-2 cells70

Neurotoxicity Neuronal cell viability assays,71,72 Neurite
outgrowth assays,71,72 and RNAi screen for
Drosophila neurons

Evaluate potential damage to neurons and effects on
neurite growth, indicating neurotoxicity

in silico, in vitro, and in vivo end points of
neurotox including sedation, ataxia, and
seizure detection73

Genotoxicity and
Carcinogenicity

Ames test, Micronucleus assay,74 Comet
assay, Cell transformation assays75−79

Assess DNA damage and mutagenic potential, indicating
genetic toxic risks. Evaluate the potential for causing
cancer through cell transformation and chromosomal
damage

Ames data set collated by Xu et al. 80 CCRIS
(Chemical Carcinogenesis Research Infor-
mation System) Data81

Endocrine Dis-
ruption

Reporter gene assays (e.g., for estrogen
receptor activity), H295R steroidogenesis
assay82,83

Assess interference with hormone activity, focusing on
receptor binding and hormone production

Endocrine-related in vitro assays from Tox-
Cast84

Skin Sensitization Local lymph node assay (LLNA),85 guinea pig
maximization test (GPMT)

Evaluate the potential for causing skin irritation or damage
using human skin models

AOP-related assays in SkinSensDB86− Kera-
tinoSens/LuSens, human Cell Line Activa-
tion Test (h-CLAT), Local lymph node assay
(LLNA)

Ocular Toxicity Bovine corneal opacity and permeability
(BCOP) assay, HET-CAM assay87

Assess the potential for causing eye irritation or damage
through corneal and membrane assays

GHS classifications based on Draize rabbit eye
test88

aData from these assays are commonly used in the ML models. For more details on the secondary pharmacology panel of targets, see Bowes et al.11

and Brennan et al.55
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Human Ether-a-Go-Go-Related Gene (hERG) channel inhib-
itors. However, the hERG assay is merely a proxy end point for
some cardiotoxicity signals such as prolonging the QT interval of
ECG in a beating heart.51 It does not convey the potential
severity of the induced cardiotoxicity by itself; rather, the extent
of QT prolongation (extended interval between the heart
contracting and relaxing) and the risk of progressing to TdP
(Torsades de Pointes, a type of atypical heart rhythm) vary
significantly among compounds known to inhibit hERG (even at
very similar activity against hERG itself), illustrating the
importance of taking into account the ADME properties of
drugs in toxicity prediction.52 Some proxy end points have been
very well established, such as skin sensitization for cosmetics,
where the European Union (EU) has already phased out animal-
based experiments.53 Key Events (KEs) are well-defined for skin
sensitization, which often involves chemical reactivity, offering
detailed mechanistic insight into how chemicals trigger skin
sensitization. The OECD has specified a series of in vitro assays
to accurately measure many of the early key events in skin
sensitization. For instance, KE1, which involves the covalent
binding of haptens to skin proteins, is effectively assessed by the
Direct Peptide Reactivity Assay (DPRA), Amino Acid
Derivative Reactivity Assay (ADRA), and the kinetic DPRA
assay, and these are well-established methods from the OECD.54

Proxy end points such as activity against protein targets are
mechanistically understood and help gather information on the
bioactivity profile of the compounds (Table 1). Secondary
pharmacology (off-target effect) is usually screened for using a
panel of targets with a relatively well-established relationship to
human toxicity (for details, see Bowes et al.11 and Brennan et
al.55).

Selecting an end point to be predicted goes hand in hand with
selecting data sets containing values for that end point.
Companies have their own in-house toxicity data and there
are also publicly available data sets, such as reviewed in Vo et
al.,56 Cavasotto et al.,57 Huang et al.,58 and Schapin et al.59

Regardless of the source, data sets often suffer from technical
issues that require careful preprocessing and data curation. For
instance, there might be invalid chemical structures, inconsistent
chemical representations, or undefined stereochemistry. More-
over, data sets might include irrelevant toxicity end points or
high assay artifact rates, which do not allow for proper ML
benchmarking.60 Here, we hence present a list of data sets
structured by the type of organ-based toxicity they aim to predict
(Table 2) that were carefully examined and represent clearly
defined end points, with outcomes that are likely to be
reproducible. Data sets such as the Novartis Secondary
Pharmacology Database (SPD)61 and Biogen ADME41 provide
a large number of data points from consistently measured state-
of-the-art in vitro assays and commercially available compounds,
which might be particularly useful for newcomers seeking to
understand the available data landscape when building and
benchmarking ML models. Nevertheless, the precise use of a
data set for a particular purpose requires case-by-case
consideration and can hence not be generically answered here.

■ CHEMICAL DIVERSITY AND APPLICABILITY
DOMAIN

The diversity of the represented chemical space is a key aspect to
consider when choosing a data set for modeling. The
extrapolation of ML models to novel chemistry (not observed
during model training) is difficult to achieve in many cases, due
to the size of chemical space available and the “local” behavior of

properties for highly similar compound. Therefore, the data set
for the selected proxy end point should ideally cover a wide
range of chemical structures on which the model might be used.
For this reason, models are often regularly updated by using
assay results from the latest round of project compounds.

A local model built with a small data set lacking structural
diversity will have a narrow applicability domain, i.e., strong
performance only within a particular area of chemical space.
Nevertheless, this might be very useful for a particular project.
Local models typically have poor performance on novel
chemical scaffolds; that is, scaffolds that represent different
features from the chemicals used for training a model.99,100

Generally, most ML models predicting toxicity (but also
bioactivity and other domains) are in practice local models
with limited applicability in the larger chemical space, and
extrapolation can only be expected to a limited extent due to the
high dimensionality of input space and limited data.101,102 In
theory, with large and diverse data sets, ML models ought to
have stronger performance and generalizability. Such models are
referred to as global models, and are typically trained with data
from different series or scaffolds.100 However, despite their
conceptually greater generalization potential, global models for
toxicity prediction are often infeasible. One reason is data
availability or large experimental variability as data sets are often
published with inadequate metadata to be able to effectively
combine measurements from different laboratories and/or with
different equipment. One example is hERG inhibition, where we
often see a massive variability in measured IC50 values due to
how compounds were measured.103 Despite this variability,
many charged hERG blockers share a basic nitrogen
pharmacophore, which classification models�commonly used
for this end point�can recognize when predicting across a
broad chemical space.104,105 Global models work only in cases
where the data available is sufficiently large and where the
relationship of the end point with chemical structure is
sufficiently simple for a global model to capture predictive
trends (in the given descriptor space employed, see next
section). For example global models may work better in the
prediction of logD where large data sets are available106,107

(compared to models predicting toxicity outcomes). LogD is in
principle largely additive in nature; that is, the same group on
different scaffolds makes similar contributions (which then
enables the model to extrapolate to new cases). Mannhold et al.
observed RMSE = 1 for prediction of logP/logD7.4 for over
95,000 Pfizer compounds and mentioned this result as failure.108

The time split validation model for logD in the article reported
an RMSE of 0.92 and is still worse than the 0.3 expected
experimental error of this property. End points that are
correlated with logD also show some additivity, but for examples
where lipophilicity is not the driver of behavior (e.g., high logD,
low unbound intrinsic clearance), usually ML models tends to
predict incorrectly. A drug’s biological activity (potency), in
contrast, tends to be more specific to the overall chemical
structure (due to the dependency of bioactivity on a particular
spatial arrangement of features in a protein binding pocket), and
while it has a lipophilicity component, it is more often influenced
by nonadditive effects from group combinations and shows less
additivity across targets. Validating models within their
applicability domain (and establishing this applicability domain
in the first place) is an important topic that is discussed later in
this work.
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■ STANDARDIZING CHEMICAL STRUCTURES
Preprocessing chemical data should include a clearly outlined
and reproducible method to standardize molecules and generate
ML-ready representations,109 considering validity, stereochem-
istry, solvents and counterions, tautomerism, and protonation
states. Each of these factors plays a critical role in the molecule’s
interaction with biological targets and also for the descriptors
that are generated from the chemical structures as input for ML
models.

Enantiomers can have vastly different pharmacokinetic and
pharmacodynamic properties, impacting efficacy and safety. For
example, (R)- and (S)-fluoxetine show differences in metabo-
lism, receptor binding, and side effects.110,111 At the biological
receptor level, enantiomers can also show stereoselectivity; D-
asparagine tastes sweet whereas L-asparagine does not.112 At an
experimental level, the presence of multiple enantiomers within
a single screening compound sample reduces the potential
concentration of active species and complicates the identi-
fication of hits from the assays. Separating the activity of various
isomers from a racemic mixture is difficult because individual
enantiomers must be tested to find which causes the true
biological activity. At the modeling level, some molecular
fingerprint representations do not encode stereochemistry,
which needs to be taken into account (see next section).
Moreover, in public databases, stereochemistry annotation is
usually poor and absolute configuration is often unknown,113

particularly for natural products. Unfortunately, in our
experience, where stereochemistry information is present,
some of it is often arbitrarily chosen, as enantiomers may get
separated early in preprocessing. One common approach in
modeling is to remove stereochemistry information altogether
before generating representations, and as most drug molecules
are usually not chiral, this approach generally retains information
content of the majority of the training data set (losing
information only where stereochemistry has an impact on the
respective end point). Unfortunately, some processing work-
flows involve selecting a single, arbitrary enantiomer, which is
clearly not optimal. Another approach in modeling is
determining all stereocenters, correcting invalid stereochemis-
try, and generating canonical isomeric SMILES that retain
stereochemistry.114,115 In cases where stereochemistry has an
impact on the respective end point, and where sufficient data is
available for the model to learn this relationship, this approach
may sometimes be advantageous.

Tautomers are structural isomers that are readily interconver-
tible due to the transfer of one or more protons.116 Tautomerism
can explain certain bioactivity, for example, the presence of a
double bond at the α,β-position adjacent to the keto carbonyl in
α-ketoamide derivatives allows the formation of inactive
tautomers that exist in equilibrium, and this leads to reduced
efficacy against Dengue virus proteases.117 Thus, considering
tautomers is important from a modeling perspective, as they vary
in physicochemical properties such as logP, hydrophobicity, and
solubility. Many attempts to predict low-energy tautomers have
been unsatisfactory.118 The standardized molecule from
tautomer enumeration will typically not represent the “correct”
form in the solution, and exhaustive searches can yield
nonphysical forms that cannot exist in the solution. The best
approach in a standardization pipeline, in practice, can often be
to be consistent throughout because often being consistent is
more important than being correct for subsequent model
generation steps. Significant efforts have been made in

cheminformatics to study tautomerism in large data sets, in
particular, on selecting the most consistent tautomer and
capturing their molecular descriptors.119−121 Tools like RDKit
and others provide methods to enumerate tautomers; however,
they often handle tautomerism differently, and not all types of
tautomerism are implemented in every software package,
leading generally to different results. For example, PubChem
standardizer generates a canonical tautomer during compound
standardization, but ChEMBL does not.114,115 Overall,
tautomers are often not trivial to handle when preprocessing
structures for predictive modeling.

The protonation state of a molecule affects, among other
biological properties, binding to transporters and enzymes,
permeability across biological membranes, and pharmacokinetic
and pharmacodynamic properties.122 Due to effects on
distribution of a molecule, protonation state may be even
more important for toxicity prediction than other end points.
For example, drugs such as proton pump inhibitors, with a pKa
between 3.8 and 4.9, selectively accumulate in the acidic
secretory canaliculi of parietal cells and are converted into active
forms only under specific protonation conditions.123 When
predicting pharmacokinetic parameters, a relevant pH must be
considered for protonating compounds during compound
standardization (such as the pH of blood, or the pH in the GI
tract in case of absorption, etc.).124,125 The impact of
protonation on featurization varies according to the descriptor
used. For example, MACCS keys (Molecular ACCess System)
have a key (key no. 49) that indicates the presence or absence of
charge, while Morgan fingerprints are invariant to protonation
states. Descriptors such as the Hammett electronic parameter
(σ), logD, and the Taft constant are also impacted by the
protonation state of the molecule. Hence, protonation states of
molecules are important, but challenging aspects of preparing
small molecules for modeling.126

■ CHECKING END POINT DATA FOR
INCONSISTENCIES OR AMBIGUITIES

The next stage of preparing data for modeling involves assessing
the biological data (end point space). Often more so than
traditional ML data sets (for example, from the image or speech
domain), biological data sets are conditional on experimental
factors such as compound concentration, cell type, time points,
and in vivo pharmacokinetics.127 Therefore, data from such end
points require careful curation to remove inconsistencies or
ambiguities in the measured end points and minimize the risk of
introducing biases into ML models. For example, the Kendall
Tau test can measure the ordinal association between two
measured quantities, helping to identify inconsistencies in
ranked data.128 For example, Landrum et al. demonstrated that
in nearly 65% of instances, multiple IC50 assays for the same
compound-target pair showed discrepancies of over 3-fold, with
27% of cases differing by more than 10-fold, and a Kendall’s Tau
correlation of 0.51 between multiple assays measuring the same
compound against the same target.129 Outlier detection
methods, such as Z-scores or the Tukey IQR method, can
highlight anomalies that may indicate errors.130 For example,
Kalliokoski et. al recommends if discrepancies are observed in
ΔpIC50 are greater than 2.5, there is a high probability they may
contain errors and those inconsistent experimental records can
be removed before modeling.131 For example, models designed
to predict specific toxicities, such as mitochondrial membrane
depolarization or DNA damage from in vitro assays, often
inadvertently capture and predict broader indicators of overall
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cell viability instead.132 Such models may have been trained
without confirmatory assay data�which combines results from
a screening assay with a cytotoxicity counter screen to exclude
highly cytotoxic compounds.133,134 Some modeling methods,
such as Huber regression,135,136 are less sensitive to outliers, and
given the noise in biological data, these can be preferable (an
analogy being that median-averaging is less sensitive to outliers
than mean-averaging). Other models, such as Probabilistic
Neural Networks,137 can take large variations into account while
training, and can generate predictions along with confidence
intervals or prediction ranges that reflect the uncertainty or
variability in the data. Overall, curating the biological end points
to avoid biases or inaccuracies that could compromise model
performance is essential for ensuring that models produce
meaningful and actionable predictions.

■ THE CONDITIONAL NATURE OF DATA AND
CATEGORIZATION

A given compound is not simply “toxic” or “non-toxic”, as
famously quoted by Paracelsus in 1538, “What is there that is not
poison? All things are poison, and nothing is without poison.
Solely the dose determines that a thing is not a poison”.138 The
effective dose, Cmax (maximum concentration in the blood),
and concentrations in relevant organs can vary by orders of
magnitude depending on a molecule’s efficacy and its ADME
properties.139 Therefore, any measurement of toxicity�
whether through a simplified binary classification or a detailed
dose−response curve�is useful only when it reflects clinically
relevant doses. Given that toxicity (as other effects) can vary
significantly depending on the experimental conditions, such as
the dosage, duration of exposure, and the biological model used
(organism, sex, target tissue, etc.), this ‘conditionality’ of
biological data often represents a problem when training
predictive models; it is rarely practical to capture experimental
conditions in the model itself, given the sparsity of data across
experiment variables.

Converting toxicity data sets into simplistic binary prediction
problems can hence simplify ML strategies but serve as poor
representations of biological realities. For example, selective
estrogen receptor modulators stimulate estrogen receptors at
very low (picomolar) concentrations, but at much higher
(micromolar) concentrations, they impact microtubules,
leading to a distinct activity profile.140 Binarization of
continuous values leads to loss of information, especially for
compounds that lie close to the threshold for binarization.127

Mervin et al. presented a compelling case for employing
particular modeling methods to better use binary labels based on
readouts that were originally continuous in nature, given
reasonable constraints upon modeling objective and data
sets.141 The presence of activity cliffs (where small changes in
chemical structure lead to major changes in bioactivity) in data
sets makes the distribution of labels highly heteroscedastic
(uneven over the range of values measured). Given the unequal
distribution of measurement error across the range of activity
values, the authors argue that regression is also not favorable for
in silico target prediction and suggest using Probabilistic
Random Forest models. These models were shown to improve
bioactivity predictions close to the classification threshold by
taking into account the experimental uncertainty. To avoid
choosing a single particular threshold for binary classes, one
could incorporate multiclass categories such as “highly toxic”,
“toxic”, “nontoxic”, and “ambiguous”. Multiclass categorization
can use dose, exposure, or margins to set thresholds for
classification calls. For example, models using in vivo toxicity
data might set a threshold of totalCmax value less than 10 μM but
greater than 1 μM, which helps to set the context around the
category. Representing intermediate activity or ambiguity can be
particularly valuable in capturing the complexities of biological
data and preventing the misclassification of borderline cases.

To summarize Pillar 1, the chosen data set must be relevant to
the toxicity one wants to predict, represent chemical space
sufficiently diverse and relevant for the intended use case, be

Figure 3. An example selection process for chemical representations. Chemical representations vary in their ability to capture the complexity of the
molecular structures. When building models for specific categories, like small molecules or natural products, it is important to choose a suitable
representation, based on factors such as predictive performance. For instance, circular fingerprints often work well for small molecules, while
pharmacophore-based fingerprints may be better suited for natural products. However, studies show that no single representation consistently
outperforms others across all QSAR data sets.151,152
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high in information content, provide mechanistic insights
(ideally), and be appropriately preprocessed to remove
inconsistencies. Well-curated data (with a standardized frame-
work for organizing and categorizing information where
possible) reliably train models only when the encoded features
capture the most relevant chemical and biological properties.
Together, these elements enable the development of accurate,
reliable, and generalizable predictive models that are more likely
to be applicable in a real-world drug discovery context.

■ PILLAR 2: ENCODING CHEMICAL STRUCTURES
INTO INFORMATION-RICH AND/OR MEANINGFUL
FEATURES

ML models for molecular toxicity prediction that use chemical
structures as their input are based on the fact that a molecule’s
properties depend on its chemical structure142,143 and that,
generally, molecules with ‘similar’ chemical structures (which
can be defined in a wide variety of ways) tend to exhibit similar
properties. In classical ML applied to these tasks, quantitative
structure−activity−property relationship (QSAR/QSPR) mod-
els are trained on predefined feature spaces representing
chemical structures (Table 3) and used to predict toxicity
labels. As such, these models can only learn relationships
captured by the feature representation chosen by the ML
practitioner; the choice of representation strongly influences the
ability to predict particular molecular toxicities (Figure 3 and
described in more detail in subsequent sections).1,144

Descriptors derived from a molecule’s structure are used to
represent its chemical and physical properties in this particular
feature space, and hence model performance (and interpret-
ability) is intrinsically linked to feature choice. For example,
physicochemical properties of a structure are related to ADME
end points such as permeability or solubility; omitting features
such as charge or molecular weight will generally decrease model
performance for those end points. Alternatively, features can be
learned directly from chemical structures, such as structural
keys, chemical fingerprints, etc., but each featurization method is
based on inherent assumptions that might not apply in the
universal chemical space, encompassing approximately 1060

compounds.36,145 Further, structure−property dependencies
are often not smoothly related: exceptions to the general
structure−property rule are called activity cliffs�structurally

similar compounds that exhibit significantly different proper-
ties.89 Activity cliffs test the limits of structure-only prediction
and require experiment-based inputs for successful prediction,
whether biological or physicochemical assays differentiate
structurally similar compounds. Overall, the choice of features
to represent a molecule is nontrivial.

Besides chemical structure-based descriptors, phenotypic data
are sometimes available to aid predictions. These omics
descriptors can be collected from cells treated with each
chemical, including readouts like the Cell Painting assay,
transcriptomics, proteomics and metabolomics.5,146−148 These
are relatively unbiased or hypothesis-free descriptors, and unlike
computed structural features, they report on the actual
interaction of the chemical with a biological system. The
experimental costs for phenotypic assays can be high, but
descriptors from them have been shown to improve the chemical
applicability domain of models to predict toxicity.146,149,150

Nevertheless, representations from phenotypic data sets might
not always be relevant to predict a specific biological end point;
that is, they have limitations in their biological applicability
domain (i.e., mode of action coverage). The signal present in
phenotypic data needs to be established and validated for each
end point of interest, in many cases empirically. Whereas Pillar 1
covered compound standardization, the focus of this Pillar is on
representations directly derived from chemical structures, given
that this representation does not require experimentally
determining compound effects, and it is hence universally
applicable.

■ MOLECULAR KEYS AND FINGERPRINTS
One common representation of molecules using only their
chemical structure as input is molecular keys (Figure 4a, top).153

Structural keys such as Molecular ACCess System (MACCS)
keys are a straightforward representation, originally developed
for cataloging compounds, but also performing surprisingly well
in predictive models.154 These keys encode molecular structures
into a 166-bit format (publicly available) or a 960-bit format (in
the commercial implementation) by recording the presence or
absence of specific predefined substructures or chemical
patterns within a molecule, such as the presence of ring systems,
particular functional groups, etc.155 Because each bit in
structural keys corresponds to a predefined feature, often a

Figure 4. (a) Encoding chemical structures using Molecular ACCess System (MACCS) keys, top, and Extended Connectivity Fingerprints (ECFP),
bottom. MACCS keys, originally used for cataloging, directly map specific predefined features with bits representing distinct rules, such as the presence
of atoms, bonds, etc. ECFP encodes a broader range of substructures. (b) Learned representations encapsulate the learned embeddings of atoms within
a molecule aggregated to form a comprehensive molecular embedding. Typically, they focus on molecular topology and connectivity with nodes as
atoms and edges as bonds with an iterative message-passing process.
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molecular substructure, it is easy to interpret what features are
vital for the model’s predictions. Thus, encoding molecules
using structural keys facilitates interpretation due to the direct
correspondence between specific values in the fingerprint and
particular predefined features.156,157 However, these predefined
features limit the chemical space represented, because structural
keys were not intended to capture all relevant aspects of the
chemical structure.

An alternative to structural keys are chemical fingerprints,
such as extended connectivity fingerprints (ECFPs),158 which
represent the chemical structure of a molecule as a count-based
vector or fixed-length binary vector (Figure 4a, bottom). Count-
based fingerprints in principle benefit by counting the presence
of multiple substructures, which can be especially useful in the
case of, for example, repeat units (peptide backbones, terpenes,
sugar attachments, etc.). Although count-based fingerprints
capture more information, not all ML methods can leverage
them as they are always very large (∼232-1).159 Thus, counts are
usually converted into binary bits, and therefore some details
about the molecule’s specific structural or chemical features are
lost. This loss of information does not necessarily mean lower
predictive power as the signal and predictive ability will be
retained if the relevant information is retained. As for
interpretability, it is possible to store a correspondence table
between bits and chemical substructures to allow the
unambiguous interpretation of the bits in a chemical finger-
print.160 Due to the vast number of possible substructures, most
commonly employed chemical fingerprints use a folding and
hashing algorithm to encode the chemical structure into a fixed-
size bit string.161 Here, the same bit could correspond to
multiple substructures, known as a hash collision (Figure 4a).
The transformation is usually one way that introduces
ambiguity, as the relationship between the original substructures
and the resulting bits is not easily discernible. Overall, molecular
fingerprints have been successful in toxicity prediction tasks and
capture certain aspects of the chemical structures being
analyzed; they are able to encode wider aspects of the chemical
structure than predefined keys.

■ 2D DESCRIPTORS
2D continuous descriptors are numerical properties calculated
from a molecule’s 2D graph representation, typically derived
from the connection table, molecular topology or chemical
graphs, such as hydrophobicity, topological polar surface area162

and E-state indices.163 This level of information includes details
about how atoms are connected within the molecule but does
not account for the actual spatial arrangement of atoms in three-
dimensional space. Physicochemical descriptors are often highly
relevant to the effects of drugs within biological systems and they

are readily interpretable, since they correspond to measurable
properties of a molecule.164 Further, 2D descriptors are more
computationally efficient to calculate, given that they are derived
solely from molecular connectivity matrices. In summary, using
2D descriptors for molecular representation can add informa-
tion to chemical structural information, such as chemical
fingerprints, and enhance predictive accuracy.165 The quality
of data, but then also problem-relevant and consistent
preprocessing, is a key factor controlling model quality in
cheminformatics models.

■ 3D DESCRIPTORS
3D descriptors are calculated using the three-dimensional
structure of a molecule, taking into account the spatial and
geometric properties, including bond angles, distances, and
overall geometry (Table 4). 3D descriptors can distinguish
different three-dimensional conformations, but require accurate
3D structures, which are not always available or reliable, and the
generation thereof leads to ‘combinatorial explosion’ (a large
number of possible conformations). 3D information is needed in
some cases such as for docking, where a spatial fit of the ligand
into the target is performed.167 Studies have reported 3D
descriptors to be more effective than 2D descriptors for
predicting biological targets of ligands with low structural
similarity, given the ability of 3D descriptors to capture
pharmacophoric alignments.168 Overall, 3D descriptors can
capture critical stereochemical and conformational information
that can enhance predictions involving complex interactions and
stereochemistry; however, they intrinsically need more comput-
ing resources to calculate, in particular, due to conformational
sampling. When it comes to the information content that they
contain, the signal-to-noise ratio needs to be considered (which
does not always increase with descriptor complexity). Moreover,
benchmark data sets often contain analogues that can already be
well predicted by 2D descriptors, thereby intrinsically favoring
2D descriptors (and disfavoring 3D ones that are computation-
ally expensive).

Among the challenges when incorporating 3D descriptors
into ML models, the most common is the conformation-
dependent nature of most 3D descriptors; this dependence
results in substantial variations of the descriptors based on the
conformer selected for descriptor calculation. In principle, an
ML model could leverage a set of descriptors derived from an
ensemble of conformations to capture the inherent flexibility of
molecules. However, typical data sets do not map activity to
different conformations and 3D representations are mostly
incompatible with most contemporary ML algorithms, which
are designed to map a single instance to a single label. Multi-
Instance Learning (MIL) offers a solution by representing each

Table 4. Commonly Used 3D Descriptors

3D Descriptor Description Source

MoRSE Descriptors 3D molecular representations of structure based on electron diffraction descriptors 173

Gravitational Index
Descriptors

Based on analogies to gravitational physics, it measures the distribution of atomic mass within a molecule 174

3D Autocorrelation
Descriptors (3DAc)

The relative position of atoms (or atom properties) based on the separation between atom pairs in Euclidean distance 175

RDF (Radial Distribution
Function)

Provides information about the probability distribution of interatomic distances within a molecule 176

WHIM Descriptors Weighted Holistic Invariant Molecular descriptors are derived from the atomic coordinates of a molecule and capture features
like size, shape, symmetry, and atom distribution

177

Flexophore/Pharmacophores Uses a reduced graph with atom types and encodes molecular flexibility through node distance histograms across diverse
conformers

178
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ligand as a bag containing multiple instances (conformers), and
the task is to predict a property or activity associated with the
entire bag rather than individual instances. MIL models are still
in early stages of development and their application in toxicity
prediction is yet to be validated.169,170

Studies combining 2D and 3D descriptors sometimes yield
better performance due to their complementary information.171

In theory, 3D information such as stereochemistry is responsible
for the selectivity in binding affinity of molecules to many
protein targets.111 In practice, for certain bioactivity prediction
tasks, 2D descriptors might outperform 3D due to a more
favorable signal-to-noise ratio in descriptor space (e.g., fewer
irrelevant conformations), and/or possibly the analogue bias in
benchmark data sets.152,171,172 Thus, the choice between 2D and
3D descriptors is specific to the problem statement and data set’s
chemical space and hence needs situation-specific exploration.

■ GRAPH-BASED REPRESENTATIONS
Graph Neural Network (GNN) architectures for molecular
toxicity and activity prediction have emerged as an often more
expressive alternative than using binary fingerprints with
classical ML models (Figure 4b). GNNs can directly learn
molecular representations from chemical structures on the fly as
the model is trained, which eliminates the need for manual
feature engineering and enables customizing representations to
specific data sets or tasks. These representations are learned
through iterative rounds of so-called ‘message passing’ (Figure
4b). Briefly, molecules are initially featurized as graphs, with
atoms as nodes and bonds as edges, and atoms and edges are
initially described by simple physicochemical properties. While
2D GNNs use only simple atom and bond properties to provide
node and edge features, 3D GNNs (Figure 5) additionally

incorporate 3D coordinates, providing spatial information for
atom and edge features, and may leverage relative coordinates in
their message passing rules to capture the molecule’s geometric
configuration. Then, atom and bond representations are made
progressively more abstract by transforming and combining the
descriptors of those atoms and bonds that are neighbors in the
graph. In this way, a message passing on the graph makes atoms

and bonds incorporate information about their chemical
environment. Finally, the representations of atoms and bonds
can be combined to obtain representations for the whole
molecule.179,180 Additional chemical- and surface-related
information can also be provided as initial input features to
GNNs. Alternatively, transformer architectures have also
emerged as a powerful approach for graph-based modeling,
with a flexible mechanism to capture long-range dependencies in
molecular structures.181,182

The use of message passing in GNNs ensures that all
operations performed by the model are independent of any
particular ordering of the constituent nodes, leading to model
reasoning that is purely based on the aggregated information
from a node’s local neighborhood. GNNs can serve as an
encoder that processes a molecular graph, with nodes
representing atoms and edges representing bonds (Figure 5),
to generate a compact vector capturing the chemical structural
information in the context of the pretraining task.183 The GNN,
pretrained on large chemical spaces, refines these representa-
tions to better capture features influencing target outcomes like
compound toxicity. Pretraining can be supervised, using labeled
data sets to predict molecular properties, or semisupervised,
leveraging labeled and unlabeled data to refine latent space
representations. Message-passing neural networks (e.g., Chem-
prop) have been proposed as encoders to generate latent space
representations of molecules180 and used to predict various
properties including toxicity (discussed later as representation
learning).184,185 An emerging class of geometric GNN
architectures for molecular toxicity prediction represents
molecular graphs in three-dimensional space and additionally
incorporates inductive biases that make them invariant to global
rigid transformations of molecules�rotations and translations
of the 3D coordinates.186−188

Gao et al. showed that models with access to three-
dimensional structural information on the protein−ligand
complex outperform approaches that use 2D fingerprint
representations for the prediction of protein−ligand binding
affinity.152 Broadly, for those situations where the binding pose
is relevant for an effect, using three-dimensional binding pose-
dependent properties may provide a more comprehensive
representation of the compound (albeit with the need to handle
conformational information). However, protein flexibility is a
significant factor in scenarios where binding pockets are less
defined or allosteric binding occurs; the conformational changes
in the protein induced by ligand binding can significantly affect
the binding mode and affinity. For example, enzymes like
cytochrome P450s (CYPs) as well as transporters exhibit a high
degree of flexibility, further complicating the accurate prediction
of ligand−protein interactions.189 3D ligand information is also
being used in protein−ligand cofolding, which then predicts
binding, and this is rapidly evolving with recent advances in
AlphaFold190 and RosettaFold.191

In reality, three-dimensional molecules have several possible
conformers, with proteins and ligands existing in multiple
conformations and ensembles, and their interactions can shift
these conformational equilibria. As such, a single three-
dimensional graph embedding may fail to consider molecules’
dynamic behavior and flexibility, which can adopt various
conformations in different environments, such as rotational
freedom around single bonds. For example, the conformers of
acetylcholine, such as the anti and gauche forms, demonstrate
variable affinity to nicotinic and muscarinic receptor sub-
types.192 In contrast, only the anti form is preferred for catalysis

Figure 5. 3D Graph Neural Network (GNN) architectures applied to
molecular representations. 3D geometric GNN representations
incorporate spatial relationships and geometric transformations to
capture three-dimensional information, such as bond angles.
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by acetylcholinesterase, an enzyme critical in the breakdown of
acetylcholine and, thus, in regulating neurotransmission.193,194

However, flexibility is not always critical to prediction for ML
models�in majority of data, if an inhibitor fits the
pharmacophore and effectively binds to inhibit the target, it
may be sufficient to train an ML model without considering the
molecule’s flexibility. Where importance of molecules’ dynamic
behavior and flexibility is needed based on the specific context
and the nature of the interaction being studied, one could use
higher dimensional descriptors (multidimensional
QSAR195,196) or use multiple instance learning (MIL), learning
meaningful molecular representations relevant to prediction
tasks from multiple ligand conformers of three-dimensional
chemical structures.197,198 By leveraging the diverse conforma-
tions that a molecule can adopt, MIL enhances the accuracy of
toxicity predictions.199

Whether to use 2D or 3D geometric GNNs for molecular
toxicity prediction is a question of data availability and the
expressivity of representations. For tasks where the conforma-
tional state of a molecule is known to be important, such as
protein−ligand interactions, 3D GNNs that incorporate
protein−ligand poses from docking (providing information
about the ligand’s approximate binding mode) have been shown
to outperform models based on 2D fingerprints that also encode
protein−ligand extended connectivity, underscoring the critical
role of 3D information in accurately predicting protein−ligand
binding affinity.200−202

The advantage of 3D information compared to compressed
representations has not been completely established in practice
for the prediction of toxicity end points; Cremer et al. showed
that 2D graph-based models produce comparable results to a 3D
equivariant graph transformer model (which leverages geometry
of conformers) and 3D geometry-based graph neural networks
on ToxCast and Tox21 assays.203 Still, the authors largely
attribute the comparable results to the limited data set size in
toxicity data sets; also toxicity can be driven by individual
chemical substructures (e.g., reactive chemical groups, electro-
philicity, etc.), where 2D descriptors capture relevant
information rather well. The relative paucity of 3D protein
structure data means that overfitting is common in more
expressive geometric GNNs, leading to most published work in
molecular toxicity prediction relying on standard 2D GNNs.204

■ REPRESENTATION LEARNING
Representations can be learned on a given data set and then used
as a feature on another prediction task, for example, in a strategy
called transfer learning. Representations that have been
pretrained for this purpose are relatively novel to cheminfor-
matics compared to chemical fingerprints. Unlike hand-
engineered or experimental descriptors, representation learning
automatically extracts relevant features from raw data, capturing
complex patterns and relationships, and is particularly powerful
when handling large data sets.106 By contrast, they are often not
beneficial on smaller data sets.205 Encoders are typically
pretrained on related tasks to extract relevant features from
raw data into a lower-dimensional and abstract representation
known as the latent space. The compressed vector space retains
essential features, making it easier for the models to handle
complex data. Learned representations can be used downstream
as feature vector inputs to another model or can be fine-tuned
for a specific task.

There are various strategies to learn representations, such as
message passing neural networks, discussed in the prior section.

Another approach to automatically extract relevant features
from raw data involves comparing and contrasting samples
(including the possibility of using 3D information).170,206 This
method, known as contrastive learning, trains a model to
distinguish between similar and dissimilar pairs of data points,
typically by minimizing the distance between representations of
similar pairs (positive pairs) and maximizing the distance
between representations of dissimilar pairs (negative pairs).
Thus, contrastive learning involves creating an embedding space
where similar data points are located close to each other and
dissimilar points are distant. For example, in the context of
compound bioactivity data, the model might be trained to
recognize that two different chemical scaffolds with similar
bioactivity should have similar representations, while scaffolds
with different bioactivity should have distinct representations. In
addition to the strategies above, another potent method for
learning representations involves using neural machine trans-
lation between two semantically equivalent but syntactically
distinct molecular structure notations, such as InChI and
SMILES. This technique, based on continuous and data-driven
descriptors,207 compresses the shared substantive information
from both notations into a condensed, information-rich vector
representation.

One of the advantages of representation learning is its ability
to integrate multiple data types, such as chemical structures,
biological activities, gene expression, and phenotypic pro-
files.208,209 Liu et al. introduced the Information Alignment
(InfoAlign) approach, which uses the information bottleneck
method to learn enhanced molecular representations by
integrating chemical structure data with cell morphology and
gene expression data.209 On the Biogen ADME data set,
InfoAlign was tested across five end points: MDR1-MDCK
efflux ratio (ER), solubility at pH 6.8, rat liver microsomal
intrinsic clearance, human plasma protein binding (hPPB)
percent unbound, and rat plasma protein binding (rPPB)
percent unbound. InfoAlign outperformed traditional chemical
fingerprints and other contrastive learning methods like
CLOOME210 and InfoCORE211 reducing mean average errors
by 6.33%, and thus learning better representations of molecules
by integrating biological data.5 Overall, representation learning
allows the integration of various task-relevant biological data in
encoding chemical space.

■ FEATURE SELECTION OR REDUCTION
Feature selection or reduction is a key step in data analysis and
modeling, serving as a way to reduce model variance (via the
elimination of noisy features212) or bias (via the inclusion of
relevant features).213 Thus, feature selection methods can
enhance the signal-to-noise ratio and enable the model to
concentrate on the most significant predictors. An effective and
efficient feature selection method considers both feature
relevance (high information content) and redundancy (corre-
lations between features).214 Including irrelevant or redundant
features can add noise (albeit models like partial least-squares
regression, as one of few exceptions, can still work with highly
redundant features), causing the model to overfit by learning the
noise rather than the true underlying patterns resulting in poor
generalization of new data and decreased model performance.214

However, eliminating useful features during the selection
process degrades performance by reducing the model’s ability
to capture important patterns or relationships in the data. The
difficulty in practice is that data sets are limited in size, and hence
feature relevance can only be assessed on the given data;
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relevance of features might change when new data becomes
available.

Feature selection or reduction (as well as any optimization of
model hyperparameters) should be done on the training data
only, while the test set, on which future performance of the
model is estimated, should not be used for feature selection; this
would represent information leakage.215,216 Feature selection
methods can evaluate features based on statistical criteria
without involving a predictive model (‘filters’), use a machine
learning model to iteratively select the best subset of features by
testing performance (‘wrappers’), or be embedded within the
learning process of a predictive model (‘embedded meth-
ods’).217

Several methods address the feature selection step (Table
5).160 For instance, Minimum Redundancy Maximum Rele-
vance (MRMR) aims to select features that are highly correlated
with the target variable while being minimally redundant with
each other.218 Recursive Feature Elimination (RFE) iteratively
removes less significant features based on model performance,
providing an optimal subset of features and integrating well with
different model types.219 Other techniques like Mutual
Information measure the ‘information gain’ provided by each
feature (that is, information provided about the target variable),
capturing nonlinear relationships and aiding in feature
ranking.220 Boruta is an all-relevant feature selection method:
that is, selecting all features with a meaningful relationship to the
target, whether redundant or unique. Boruta iteratively
compares the importance of actual features with that of
randomly shuffled features to determine significance, making it
robust to overfitting and easy to interpret.221 Context-depend-
ent sparse feature selection methods, such as LASSO and other
L1 methods, help remove low-relevance features, which
minimizes overfitting and improves model interpretability and
predictive power.222 Principal Component Analysis (PCA) is
often employed for feature (dimensionality) reduction by
selecting a finite number of components that explain the
majority of the variance, but it does not explicitly select features

based on their relevance to a specific task, such as predicting a
target variable such as toxicity. While some have proposed using
PCA for feature selection,223 it is usually not ideal for feature
selection where task-specific relevance is key.224 Overall, in ML
models, feature selection or reduction can improve the signal in
the data by removing irrelevant or redundant features, thereby
enhancing model performance as well as simplifying model
interpretation due to the reduced number of features (provided
that suitable features exist in the first place).

■ PILLAR 3: THE CHOICE OF MODEL ALGORITHM
After choosing a suitable representation of chemicals, the choice
of modeling algorithm is the next critical factor determining the
performance and usefulness of an ML system for molecular
toxicity prediction. In the context of ML, a model is a
mathematical system designed to make predictions based on
input data. Models use a set of features (as outlined in the
previous section) to capture the essential characteristics of the
molecules under study.143 Most models make predictions for a
data point (chemical) by using that data point’s features and a
set of model parameters that need to be fitted (trained) to the
data. In a simple linear model, these parameters determine the
weight of each descriptor in making a prediction; however, in
more complex models, those relationships can be more difficult
to interpret. Fitting a model involves adjusting these parameters
to minimize the error between the model’s predictions and
observed outcomes from the training data. For a review on
classical ML methods, the reader is referred to Mitchell229 and
Lavecchia et al.230

■ BIAS-VARIANCE TRADE-OFFS
As with selecting a feature representation, the choice of ML
models also presents a trade-off between having lower prediction
power (or poor ability to generalize to novel chemical space)
and overfitting (the ability to fit the training set well, but at the
cost of being less able to generalize to unseen structures).
Usually, ML models with constrained functional forms can only

Figure 6. (a) Theoretical depiction of how increased model complexity reduces bias but increases variance, highlighting the tipping point where
overfitting begins. Yet, recent research reveals a “double descent” regime (toward the right), as described in the main text. (b) Data points (in brown)
alongside fitted models (blue dashed lines) to visualize the difference in the fit quality across various model complexities, from simple models with
constrained functional forms to neural networks that are universal approximators with high expressivity but prone to overfitting.
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approximate a limited set of target functions, limiting their
expressivity but preventing overfitting, which hence represents a
trade-off (Figure 6). For example, linear regression models
assume a linear relationship between the input features and
labels, which limits the expressivity of the model to linear
functions. Thus, linear regression models can be insufficient for
capturing the complexity and variability present in domains
where nonlinear patterns are common but can be a useful choice
when data is scarce and have the advantage of being readily
interpretable. On the other hand, deep learning models, such as
multilayer feed-forward neural networks are more flexible
(universal) approximators and can capture complex nonlinear
functions but require sufficient size, data, training, and
hyperparameter tuning (network architecture, etc.), and come
at a cost of interpretability.231

The trade-off between poor predictive power and overfitting is
a fundamental principle of ML known as the bias-variance trade-
off (Figure 6).232 Both bias and variance relate to the model’s
ability to learn feature-target relationships from the training data
set. Bias refers to the model’s tendency to not capture (and
hence overgeneralize) real feature-target relationships that are
present in the training set. Bias can be high when a simple model
is used, such as a linear model or a small neural network, or when
the model or training algorithm includes assumptions about the
shape and nature of the data that may not be true for the data
seen during deployment. Variance, on the other hand, refers to
the model’s tendency to capture spurious relationships in the
training data set (such as noise). For example, the presence of a
rare functional group in a single toxic compound (where this
functional group, however, is not related to toxicity) might lead
the model to incorrectly predict that other compounds with this
functional group are toxic. Overly simplistic models exhibit high
bias and fail to learn from the data adequately but are less likely
to overfit to noise or spurious correlations in the training data
and can have the ability to extrapolate better to new data. Due to

their simplicity, interpretability, and robustness to noise,
classical models, such as linear models (Table 6), have been
widely used with binary fingerprints to predict toxicity.1,233 In
contrast, complex models can model intricate relationships but
are more likely to learn spurious correlations and overfit.234

Recent deep learning research has challenged and modified
the traditional understanding of the bias-variance trade-off by
introducing the concept of double descent (Figure 6a).232,235

When a model becomes too complex, it initially leads to
overfitting and high variance (Figure 6b). As the number of
parameters approaches the number of observations, small
changes in the data cause large changes in the model. However,
as complexity is increased further, the error surprisingly
decreases again, an effect known as ‘double descent’.235 At
some point, highly overparametrized models can hence often
generalize well, despite having at the same time a large number
of parameters. Double descent challenges the traditional U-
shaped curve of bias-variance trade-off, revealing a more
nuanced relationship between model complexity, training time
and data set size with the generalization error.236 Nevertheless,
its relevance to toxicology data, especially in low-data scenarios,
may at the current point in time be limited. There are only a few
instances where this effect has been observed in the drug
discovery domain. For example, when training NeuralDock to
predict the binding energy and affinity of a protein-small
molecule pair based on protein pocket 3D structure and small
molecule topology, the authors observed the second descent
because the 46 million parameters was much higher than the
roughly 2000 data points used in training; the authors noted that
the second descent contributed to its high accuracy.237

However, in smaller data sets typically used in ML models for
compound toxicity, encountering double descent is unlikely.

Algorithms described in the prior section (Table 6) are widely
employed in molecular and toxicity prediction (Table 7), and
are based on features like molecular structure, chemical

Table 7. Reviews of the Predictive Model Algorithms Used in Predicting Toxicity

Review Year Algorithms Described/Discussed Reference

Mitchell et al. 2014 Discusses common supervised learning algorithms: Artificial Neural Networks (ANNs), Random Forest (RF), Support Vector
Machines (SVMs), k-Nearest Neighbors (kNNs), and Naiv̈e Bayes (NB) classifiers.

229

Ekins 2014 Discusses Bayesian models, SVM, kNN, and RF for predicting various toxicities, such as hepatotoxicity and cardiotoxicity. 241

Lavecchia et al. 2015 Covers algorithms like SVM, Decision Trees (DT), RF, NB classifiers, kNN, and ANN. 230

Raies and Bajic 2016 Discusses rule-based systems, structural alerts, read-across methods, dose−response models, pharmacokinetic/
pharmacodynamic models, and QSAR models.

242

Baskin 2018 Explains methods like multiple linear regression, kNN, SVM, DT, RF, and deep learning, along with unsupervised methods like
Kohonen’s self-organizing maps.

243

Yang et al. 2018 Describes ML approaches for predicting chemical toxicity, including SVM, RF, deep learning, and structural alerts for toxic
substructure identification.

244

Vamathevan et
al.

2019 Discusses ML applications in drug discovery, highlighting target identification, clinical trials, and challenges like data quality and
model interpretability to reduce clinical failure rates.

245

Ciallella et al. 2019 Reviews AI applications in computational toxicology, covering data-driven and mechanism-driven models such as Adverse
Outcome Pathways using public data sets and high-throughput screening.

246

Jimeńez-Luna
et al.

2020 Focuses on deep learning, explainable AI (XAI) techniques like feature attribution, gradient-based methods, surrogate models,
and instance-based approaches for drug discovery model interpretability.

247

Wang et al. 2021 Covers regression models, kNN, DT, NB, SVM, RF, ensemble learning, ANN, Deep Neural Networks (DNNs), and CNN for
modeling.

248

Dara et al. 2022 Describes methods such as SVM, RF, Multi-Layer Perceptron (MLP), deep learning, Autoencoders, and Reinforcement
Learning in drug discovery.

249

Cavasotto et
al.

2022 Reviews recent ML advances in toxicity prediction, noting challenges, methods, and relevant databases. 57

Tran et al. 2023 Focuses on key toxicity properties (e.g., hERG inhibition, drug-induced liver injury) and ML models like RF, SVM, and DNN in
toxicity prediction.

250

Guo et al. 2023 Covers ML and deep learning models like SVM, RF, kNN, ensemble learning, MLP, Convolutional Neural Networks (CNNs),
and Graph Convolutional Networks (GCNs) for toxicity prediction.

251

Tonoyan et al. 2024 Highlights opportunities in supervised, unsupervised, and reinforcement learning for toxicology applications. 252
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properties, and biological data. For further reading, we
recommend the compendium of articles in “Introduction to
the Special Issue: AI Meets Toxicology” and “Analysis of Tox24
challenge results”, which offers a comprehensive exploration of
AI/ML applications in toxicology, presenting advanced method-

ologies and diverse case studies that showcase the full potential

of these technologies.239,240

Figure 7. (a) Variational Autoencoders (VAEs) encode molecules into a latent space representation and then decode to generate new molecules,
aiding in the exploration of chemical space. (b) A conceptual framework behind Generative Adversarial Networks (GANs), illustrating how a generator
creates new molecule designs and a discriminator evaluates their realism, facilitating the generation of novel compounds. (c) Diffusion Models, a class
of generative models that learn to generate data by transforming noise. (d) Large Language Models (LLMs) are also used to design molecules,
emphasizing their ability to predict molecular properties and generate new compounds based on learned patterns.
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■ READ-ACROSS MODELS
While in some cases the quantitative or qualitative prediction of
a compound property across all chemical space and all output
property space is desired, especially in the safety area, sometimes
other approaches are employed. One such approach is known as
‘read-across’, which relies on structural similarity and contextual
information to predict the toxicity of a chemical substance.253,254

Read-across is particularly popular due to its application context
and the legal environment, which impose distinct requirements,
such as interpretability and confidence in assigning compound
properties. The process involves first identifying molecules that
belong to the same chemical series or category as a query
compound, based on the assumption that structurally similar
compounds will exhibit similar biological activities due to shared
mechanisms of action. Once appropriate analogs are identified,
toxicological data from these substances are “read across” (data
gap filling) to the target chemical to fill data gaps and inform
safety assessments. A k-nearest neighbor chemical structure-
based strategy (often with k = 1) is one example of a read-across
strategy. Given the regulatory environment and cultural practice
in toxicology, ‘machine learning is not everything’: approaches
can and should be tailored to the particular use case.

■ GENERATIVE MODELS
Related to predictive models are generative models, which in
addition to learning patterns from a training set are able to
generate novel chemical structures and which can include
toxicity as one factor for optimization. Unlike predictive models,
where one predicts the label for a given molecule, generative
models hence ‘design’ the molecule itself given the desired
label.255 These models are typically optimized over iterations
using scoring functions that predict desired properties including
novelty, activity, and synthesizability in addition to toxic-
ity.256,257 Recently, generative models have been used for this,
including Variational Autoencoders (VAEs), Generative
Adversarial Networks (GANs), and Large Language Models
(LLMs).256,258

■ VARIATIONAL AUTOENCODERS
Variational autoencoders (VAEs) are a class of generative
models that learn representations through compression and
reconstruction (Figure 7a).259 In a classical autoencoder, an
encoder network maps data points from a high-dimensional
input space (e.g., 2D or 3D molecular structure space) to a
lower-dimensional latent space. Then, a decoder network is
reconstructed back to the original input space, attempting to
recover the data points that were fed into the encoder network.
In contrast, in a VAE, the encoder maps a point from the input
space not to a specific point in the latent space but to the
parameters of the Gaussian distribution in the latent space, and
the decoder tries to restore the point in the input space based on
the result of sampling the Gaussian distribution. The presence of
the sampling stage makes the VAE a generative model. Since
reconstruction is required, but at the same time the latent space
is smaller than the input space, the VAE encoder network must
learn a compressed representation of the data that captures its
most important features and ignores irrelevant ones. Because the
ideal distribution in the trained latent space is known, novel
molecules can be generated with the trained model by sampling
points in the latent space and passing them through the decoder.

VAEs are popular general models for molecular representa-
tion learning and generation.260,261 Molecular generation with

VAEs can be biased to optimize various objective functions such
as docking scores262,263 and drug-likeness.264,265 In the context
of toxicity prediction, conditional VAEs265 have been applied to
explore low-toxicity regions of chemical space, using a scalarized
objective that combines labels related to different forms of
toxicity (cardiotoxicity, mutagenicity, pulmonary toxicity and
skin sensitivity).255 Other studies have used arithmetic in the
latent space to predict polypharmacology, adding or subtracting
latent representations corresponding to treatment with different
substances in order to simulate cellular states (as described by
cell morphology and gene expression) when subjected to
multiple compounds.266

■ GENERATIVE ADVERSARIAL NETWORKS
Generative Adversarial Networks (GANs) are a class of
generative models consisting of a generator and a discriminator,
two neural networks, that are trained simultaneously through
adversarial training.267 A conceptual framework behind a GAN
is depicted in Figure 7b. The generator network in Figure 7b is
trained to create novel molecular structures, while the
discriminator network evaluates whether these structures are
realistic. At each training iteration, the discriminator is shown a
batch of molecules that either were sampled randomly from a set
of real molecules (“real”) or were artificially generated by the
generator (“fake”). Using these examples, the discriminator
must learn to determine whether a molecule is real or fake. In
turn, the generator must learn to fool the discriminator by
proposing molecules that mimic those in the real set. We can
bias the generator to suggest compounds with certain properties,
for example low toxicity, by designing the set of real molecules so
that it features those properties.

Recent examples of works that explore the application of
GANs to toxicity in medicinal chemistry are MedGAN, ToxGan
and TransOrGAN. MedGAN was developed to generate new
quinoline scaffold molecules from complex molecular graphs.268

The best model included in this study generated 25% valid
compounds, of which 92% were quinolines of up to 50 atoms.
Around 22−31% of the generated molecules were predicted to
be nontoxic across the 12 Tox21 end points.269 That being said,
the generation of quinolines is a task also easily achievable by a
medicinal chemist, and the impact of such models in practice
remains to be seen. In another study, ToxGan was used to
predict new animal study results from historical data.270 Instead
of training on molecular structures, the authors used repeated
dose transcriptomic profiles from in vivo rat studies (Open TG-
GATES) to train a GAN that generated transcriptomic profiles
for compounds of interest. They could generate highly similar
transcriptomic profiles that showed over 87% agreement in
Gene Ontology with the actual gene expression data. Finally,
TransOrGAN allowed molecular mapping of gene expression
profiles based on rat RNA-seq data from 288 samples in nine
different organs of both sexes and four developmental stages.271

By inferring transcriptomic profiles between any two of the nine
organs studied, TransOrGAN achieved an average cosine
similarity of 0.984 between synthetic transcriptomic profiles
and the corresponding real profiles.

The success of frameworks like MedGAN, ToxGan, and
TransOrGAN demonstrates the principle of GANs in molecular
design, offering a promising avenue for generating novel, drug-
like compounds taking all available data into account in an
unbiased fashion. As with other ML models, however, there are
some ethical concerns with generative AI, as designing
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molecules with the reverse loss function has been shown to
rediscover potent chemical toxicants.272

■ DIFFUSION MODELS
Diffusion models have gained significant interest in drug
discovery recently.273 They are a class of generative models
that learn to generate data by transforming noise.274,275 Rather
than training a generator to fool a discriminator, diffusion
models learn to transform noise to data by learning to reverse a
diffusion process that corrupts the data. The diffusion process,
which is chosen by the ML practitioner and is not trained, starts
with a point from the data set and progressively corrupts it to
create a sequence of increasingly noisy iterates (Figure 7c). The
process is chosen such that the final iterate is completely noise,
i.e., has no information from the original data remaining such
that it does not depend on the initial data point and has a
distribution that can be easily sampled from. A neural network is
then trained to reverse the diffusion process by predicting the
previous (less noisy) iteration from any of the noisy iterates.
This neural network is used to generate data by starting with a
sample from the noise distribution and progressively predicting
each previous, less-noisy iteration until it is left with an
approximate sample from the original data distribution.

Diffusion models are used for molecular machine learning in
two main ways. First, a 2D molecular structure consisting of
atom and bond types can be generated.276 Second, given a pre-
existing 2D molecular graph, the diffusion model generates 3D
atom coordinates. For example, 3D structures can be generated
for either low-energy conformers of the molecule,277 or for other
molecular arrangements such as a ligand’s binding pose in a
protein binding pocket.278 These two approaches can also be
combined to generate both 2D molecular graph and 3D
structure at once.279 In each case, the diffusion process (to
corrupt the data) and the neural network (to reconstruct the
data) must be designed to suit the structure of the data, whether
they are discrete atoms and bonds or continuously varying atom
coordinates.

Another important use of diffusion models is to avoid off-
target toxicity by designing ligands that selectively bind to
targets over specific off-targets,280 although it remains to be seen
that such model improvement also translates to future
applications (e.g., novel chemical space). Overall, diffusion
models hold promise for predicting and understanding molecule
binding and biological pathways in silico; however, care needs to
be taken to properly evaluate models in a prospective setting.

■ LARGE LANGUAGE MODELS
A key trend in machine learning, especially with the rise of deep
learning architectures, has been the scaling of expressive power
and representation learning by harnessing available large-scale
data sets. While traditional supervised learning relies on labeled
data, which can be limited and costly to obtain, self-supervised
learning enables models to learn from unlabeled data through
carefully designed pretext tasks. These pretext tasks allow
models to extract meaningful representations from vast amounts
of real-world data regardless of annotation availability, which
allows labeled data to be preserved for a later training stage
where desired. This approach has been particularly trans-
formative in language modeling, where popular models such as
ChatGPT generate natural language sequences by effectively
using unannotated text. Autoregressive models, such as
Recurrent Neural Networks (RNNs), have also been applied

to generate molecular representations like SMILES strings or
molecular fingerprints (Figure 7c). These models work by
predicting the next token in a sequence based on the previous
tokens, making them well-suited for tasks where the structure of
the molecule is represented as a sequence. When trained on large
data sets of molecular sequences, these models can learn the
underlying patterns and relationships that define valid chemical
structures, allowing the generation of novel molecules with
similar properties.

Building on the foundation of autoregressive models, the rise
of Large Language Models (LLMs) for Natural Language
Processing (NLP)281−283 has prompted applying similar
architectures to molecular tasks given established conventions
of treating molecular structures as sequences, especially for the
purposes of generation and representation learning. LLMs are
first pretrained on a large corpus of molecular data to learn
general representations, which can then be fine-tuned for
specific downstream tasks, such as molecular property
prediction or reaction prediction. This two-step process�
pretraining and fine-tuning�enables LLMs to generalize across
different molecular tasks, making them a powerful tool for drug
discovery and cheminformatics. LLMs for chemistry are
sometimes called Chemical Language Models (CLMs). Many
chemical databases describe and store molecules in sequence
representations such as SMILES. This has facilitated the
development of generative models that treat molecules as
sequences,260,261,284 some of which have achieved considerable
success in academia and industry.285

The idea of pretraining and fine-tuning in earlier QSAR
models (before LLMs were used in chemistry) was inspired by
neurophysiology and is the basis of the ASNN method..286 Fine-
tuning approaches in QSAR (the so-called ‘Library Model’)
increased accuracy of the logP model to predict logD7.4
values.287,288 One LLM architecture that has been particularly
successful in NLP is the GPT (Generative Pretrained Trans-
former) architecture. The GPT model consists of a stack of
neural blocks, each of which is inspired by the decoder of the
transformer.289 This decoder block consists of a self-attention
layer and a feed-forward layer, both wrapped in residual
connections290 to avoid gradient degradation during back-
propagation due to the very deep architecture. The training of
GPT is performed in two stages: pretraining and fine-tuning
(Figure 7c).281 During pretraining, the model learns to generate
sequences from a training corpus of sequences one element at a
time (since sequences are typically tokenized, elements are
usually tokens in a token vocabulary; in NLP, tokens are
common word fragments or subwords, whereas in molecular
tasks, tokens may be common strings of characters in SMILES,
e.g., strings of characters that correspond to common functional
groups in SMILES representation). At each pretraining
iteration, the model’s parameters are modified to maximize the
conditional likelihood of a certain token in a sequence given all
previous tokens in that sequence. In this way, pretraining is
carried out in an unsupervised manner and it does not require
manual annotations, which are often costly to obtain. In the
second stage, fine-tuning, the models’ parameters are adapted to
improve performance in downstream supervised tasks with
labels. Fine-tuning to specific tasks can be done through several
strategies, including full-parameter tuning, adapter layers,291 or
Low-Rank Adaptation (LoRA).292 An example downstream task
in NLP is sentiment analysis, where sentences are labeled with
positive or negative sentiment labels. An example downstream
molecular task is scaffold decoration (Figure 7d). In order to
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teach a chemical language model how to decorate scaffolds to
obtain drug-like candidates with predicted low toxicity, the
scaffolds of approved drugs may be paired with drug-like
candidates. PromptSmiles is a recent CLM that specializes in
scaffold decoration and fragment linking.293

LLMs and CLMs hold great potential for molecular
generative AI and property prediction, including exploration
of predicted low-toxicity chemical spaces, taking information on
all available data into account. Generative pretraining strategy
enables this class of models to learn from large unlabeled
databases (e.g., Enamine REAL SPACE294), which is suitable for
the domain of medicinal chemistry where collecting exper-
imental labels from toxicity studies involving animal or human
clinical trials is costly. LLMs and CLMs have shown high
flexibility and performance in chemical tasks. Natural-language
models are able to capture information about chemistry and an
ability to assist with chemical tasks in natural language, including
synthesis, both with295 and without296 fine-tuning for chemistry.
Surprisingly, they have also been shown to produce molecular
representations competitive with featurizations such as finger-
prints, even when trained on natural language rather than
chemical sequences such as SMILES.297 Specifically, represen-
tations from the NLP model LLaMA2283 achieved a mean AUC-
ROC of 0.77 on the toxicity classification benchmark Tox21 that
was comparable to Morgan fingerprints that achieved a mean
AUC-ROC of 0.76 and representations from the CLM
MoLFormer-XL, trained on 1.1 billion SMILES and compara-
tively small (just 12 layers),284 achieved a mean AUC-ROC of
0.78.297 This suggests that models for natural language hold
potential in toxicity prediction (at least in the way benchmarking
has been performed in those studies). It should be kept in mind
that validation on limited data sets such as the above does not
necessarily translate to future use cases (e.g., in new chemical
space) due to analogue bias in data sets, etc. In addition, it is
worth noting that data limitations currently (and likely in the
foreseeable future) prevent the development of extremely large
models for medicinal chemistry trained on molecular sequences
such as SMILES, in contrast to LLMs such as GPT and LLaMA
that can be trained on natural language (and hence a much larger
information corpus). This is because even unlabeled databases
represent a comparatively small sample of the chemical space
(which is in the order of 1060 as opposed to around 1010 to 1015

in current databases).298,299

■ PILLAR 4: VALIDATION OF PREDICTIVE MODELS
While evaluation on validation sets is used to guide training in
many ML models, once a model is trained on a data set, it must
also be evaluated on an appropriate, clearly defined test set with
the proper evaluation metrics.

The choice of the ‘test set’ is crucial here, since one aims to
extrapolate to the performance in future use cases from the
performance obtained on the test. On the other hand, given the
size of chemical space, and that in most cases properties behave
differently in different areas of chemical space, this is no trivial
feat, as illustrated in Figure 8 below. While evaluation of the
model is performed on an ‘external test set’ (which may not be
entirely external, since it is derived from an existing, split data
set), future use cases are by definition in dif ferent areas of
chemical space, and hence performance extrapolation is in
practice often not trivial to perform. The closer to the future use
case, the better the choice of the test data set in general.

We discuss two major ways to assess the models in the
following: (1) retrospective validation, which holds out test

compounds from the same data source, for example, by splitting
the set into training and test data, and (2) prospective validation,
running separate experiments on a new set of compounds.300

Beyond validation type, realistically assessing the performance of
ML models in predictive modeling depends on selecting
appropriate numerical evaluation metrics to understand the
model’s accuracy and generalizability.33 The chemical space in
which the model can make reliable predictions (known as the
applicability domain301) should also be clearly defined following
OECD principles (as discussed earlier in this work). We discuss
various ways to define the applicability domain of models and
common approaches to understanding models via feature
importance and mechanistic analysis.

■ CHOOSING EVALUATION METRICS FOR
CLASSIFICATION

ML models must use relevant performance metrics that are
calculated on definitive predictions, along with confidence
measures, applicability domain measures, etc.302,303 in order to
be helpful for decision making. There are many evaluation
metrics for predictive models; each emphasizes a different aspect
(or a combination of aspects) of model behavior. Bender et al.33

provide a list of recommended metrics in the evaluation of ML
models in the chemical sciences. Here, we focus on some
common metrics that should be considered when predicting
assay outcomes from high-thoughoutput screens, toxicity-based
assays, and regression outputs.

For binary classification models, predictions are classified into
two classes (e.g., positive and negative negative). A confusion
matrix helps to visualize the performance of a classification
model by organizing predictions into four categories:

• True Positives (TP): Correct predictions of the positive
class

• True Negatives (TN): Correct predictions of the negative
class

• False Positives (FP): Incorrect positive predictions of
negative class instances

• False Negatives (FN): Incorrect negative predictions of
positive class instances

Some classification models produce a probability score for
each instance. A threshold is applied to convert these
probabilities into definitive class predictions (e.g., predicting a
compound as toxic or nontoxic). By adjustment of a threshold,
different trade-offs can be made between capturing more true
positives or avoiding false positives.

Figure 8. Chemical space visualized as a universe of molecules: stars
represent compounds with clusters showing similar properties. The
training set forms a constellation guiding predictions, while scattered
stars of the test set highlight challenges in extrapolating to unseen
regions, emphasizing the vastness and diversity of chemical space.
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From the confusion matrix, a range of metrics can be derived
to evaluate different aspects of the model’s performance, some of
which we will describe in the following. Accuracy is a
fundamental metric that measures the proportion of correct
predictions (both true positives and true negatives) among the
total predictions.

= +
+ + +

Accuracy
TP TN

TP TN FP FN

However, in contexts like drug discovery and toxicity
prediction, data sets are often highly imbalanced, with
significantly more inactive compounds than active ones. This
imbalance poses challenges because a model could achieve high
accuracy by predicting the majority class all of the time, offering
little practical value. For example, if the inactive class comprises
99% of the total data set, a model solely predicting this class

would be 99% correct overall, but the model would still be of no
practical use (since it never predicts a compound as active for a
given end point).

To address the limitations of accuracy in imbalanced data sets,
metrics such as balanced accuracy becomes relevant, which
consider the accuracy on the class level equally, i.e. this metric
pays the same attention to both classes, independent of the
number of data points they contain, thereby removing the above
bias (while introducing of course another).

= +
Balanced Accuracy

Sensitivity Specificity
2

Precision measures the proportion of true positives among all
positive predictions, emphasizing the model’s ability to avoid
false positives, and describing the ‘trust’ (likelihood of a positive
data label) for any positive prediction the model makes.

Figure 9. Evaluating ML model predictions in various settings: the primary goal is to prioritize specific predictions for that setting rather than rely on
predicted probabilities across a range of possible thresholds. Strategies include (a) selection, (b) deselection, (c) rank-ordering, and (d) flagging toxic
compounds. The choice of evaluation metrics in regression
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=
+

Precision
TP

TP FP

Recall (or sensitivity) assesses the proportion of true positives
identified out of all actual positives, focusing on the model’s
capacity to capture, to retrieve, all relevant instances.

=
+

Recall
TP

TP FN

The F1 Score is the harmonic mean of precision and recall.
Given its ability to account for both false positives and false
negatives, the F1 score is widely used and particularly useful in
imbalanced data sets. On the other hand, it does not consider the
true negatives in this measure, and the same F1 score can be
obtained by very different precision and recall values, and hence
model behaviors. It can be seen that every metric has particular
trade-offs of which aspects of model performance it pays
attention to.

= × ×
+

F
Precision Recall
Precision Recall

1 2

Because annotated toxicity data sets are typically smaller than
in other domains, chance plays a significant role in producing
hits. Cohen’s Kappa304 measures the agreement between actual
and predicted values, adjusted for chance agreement, making it
valuable for imbalanced data sets. However, it weighs
predictions of the positive and negative classes equally, whereas
in toxicity prediction, false positives (overpredictions) are often
tolerated more than false negatives (not detecting potential toxic
compounds).

It is also common practice to visualize model performance
using Receiver Operating Characteristic (ROC) and Precision
Recall (PR) curves (Figure 9). The ROC curve displays the
relationship between the True Positive Rate (TPR, also known
as recall or sensitivity) and the false positive rate (FPR, 1 −
specificity) across various thresholds. The Area Under the ROC
curve (AUC-ROC) provides a summary of the model’s overall
performance. However, in imbalanced data sets, AUC-ROC can
be misleading, as the model might achieve a high score simply by
prioritizing the majority class. PR curves plot precision against
recall at different thresholds. The Area Under the PR curve
(AUC-PR) is especially useful for imbalanced data sets, as it
focuses on positive class performance.

To translate predictions from models to decision making in
drug discovery, it is often relevant to visually inspect the PRC
and ROC curves obtained (Figure 9). Although often reported
in benchmarking studies where large numbers of predictions and
tasks are summarized, AUC-ROC and AUC-PR consider the
overall quality of models based on a full range of thresholds for
classification, so they are less helpful for a particular real-world
use case where a particular decision needs to be made. In the real
world, we may need, e.g., ML models in virtual screening (Figure
9a; early selection), removing the bottom 20% of least suitable
predictions (Figure 9b; say compounds certain to be unsuitable
due to high clearance), prioritizing specific predictions, such as
identifying the top 1% of predictions (Figure 9c), or rank-
ordering which compounds to test first (Figure 9c). For these
decisions, it is often important that models should be evaluated
based on the actual predictions of classes rather than model
predicted probabilities.

For virtual screening305 (Figure 9a), what matters most for
ML models is prioritizing compounds from hit triage toward
validation. From an evaluation perspective, in this setting a

model needs to be better at early detection (high sensitivity at
low false positive rates), and the modeler needs to determine the
threshold for prediction according to the practical use case, such
as the number of compounds that can be selected for
experimental testing.306 There are metrics, such as the
Enrichment Factor, designed to emphasize the early recognition
compared to the larger set of compounds considered in the ROC
curve.307 Enrichment factor refers to the ratio between the
proportion of true positives among the top-ranked candidates
and the proportion in the full screening set for some number or
fraction of top-ranked candidates. A higher enrichment factor
indicates that the model is effective at early detection, identifying
active compounds among the top-ranked candidates. From an
AUC-ROC perspective, the enrichment factor is primarily
dependent on the initial segment of the curve. It is often more
practical to work with absolute numbers, such as selecting
100,000 compounds for testing (or screening 100 × 96-well
plates), to align with the specific capacity or resources available.
Another way to achieve these objectives is by analyzing the
regions of the PRC and ROC curves. For example, ranking the
top 1% of compounds predicted correctly as active (true
positives), one could identify the region of the PRC curve where
the highest precision is achieved, while recall is relatively able to
capture 1% of positives. Typically, the top 1% of compounds
would be at the beginning of the PRC (Figure 9a), typically at
the top left of the curve, where the model makes predictions with
the highest precision because the model is most confident about
these predictions. Since it is often hard to determine what parts
of the PR or ROC curves map to percentage of compounds
predicted active, another way to evaluate models for prioritizing
compounds would be to plot precision as a function of the
percentage of compounds predicted active (with exact numbers
tested on a secondary axis).308 Overall, we would want to
identify a set of chemically diverse compounds, while a model
that has high precision. To do so, modelers could choose a
threshold that has acceptable precision and that is large enough
to perform diversity selection.

Deselection involves setting a threshold on the ROC curve to
correctly identify a large proportion of undesired compounds as
true negatives while retaining as many desired compounds as
true positives as possible (Figure 9b). To ensure a high recall of
the undesired class (e.g., 90%), we aim to maximize true negative
rate specifically subject to this constraint.

Prioritizing (or ranking) compounds based on their likelihood
of being true positives involves analyzing the Precision-Recall
Curve (PRC) to determine where precision and recall maximize
the true positive rate (Figure 9c). The goal is to identify a set of
compounds that is sufficiently large to support a selection of the
desired size while also ensuring a high confirmation rate. This
selection typically occurs in a region of the PRC where the
model maintains good precision while recalling a significant
number of true positives. An alternative way to evaluate the
model’s ability to rank compounds is to plot precision as a
function of the number of compounds predicted to be positive
(Figure 9), which is often easier to interpret.308 For finer
granularity, a rank-based metric such as Kendall’s tau can also be
useful.

For toxicity prediction tasks, when the goal is often to flag
compounds with likely toxicity, prioritizing a higher recall of
toxic compounds is often more appropriate, even if it results in
lower precision, which is associated with more false positives
(Figure 9d), because advancing toxic compounds is highly
costly. This approach is related to a deselection setting, where
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we aim for a high recall of desired compunds. On the other hand,
if the model is used to deselect compounds, a high true negative
rate (removing mostly toxic compounds) is desirable to preserve
as many safe compounds as possible. It can be seen that models
present a trade-off, and not all that is desirable can be obtained at
the same time; being able to, say, have a higher recall of desired
compounds comes at the cost of more false-positive predictions,
etc. This underlines the importance of choosing a suitable
performance metric and classification threshold for a particular
use case, as opposed to trying to find a generic answer to the
problem.

Models should also be compared with baseline models (such
as majority class or average predictor or randomly shuffled labels
using Y-Scrambling309), in order to establish how much value
the proposed model provides. Baseline models can provide
surprisingly good performance in many cases, such as on
imbalanced data sets (where one can predict the majority class),
or otherwise biased data sets, where the baseline classifier just
picks up the underlying bias of the data set.310

For classification models, it is necessary to compare models to
chance prediction and baseline models, in particular, given that
even baseline models can obtain surprisingly good performance.
Cohen’s Kappa measures the agreement between actual and
predicted values, adjusted for agreement occurring by
chance.304,311 In terms of applications, Cohen’s Kappa was
used as the metric to identify the optimal decision threshold that
maximizes the balanced accuracy of the classifier predicting
structure−activity data from 138 public data sets corresponding
to pharmaceutical targets, addressing the issue of class
imbalance, where the model may overpredict the majority
class and underpredict the minority class.312 The authors found
that optimizing thresholds significantly enhances prediction
outcomes for inhibitors of Tau fibril formation, particularly
when the initial model is already well-predictive (as measured by
AUC-ROC). This optimization improved the True Positive
Rate (TPR, also known as recall and sensitivity) from 4% to 43%
and Cohen’s Kappa from 0.06 to 0.4. However, for predicting
inhibitors of Marburg virus binding or entry into cells, where the
initial model had lower predictive power, the improvements
were more modest, with TPR increasing from 0.1% to 5% and
Cohen’s Kappa from 0.002 to 0.08. Where there are several
classes to predict (such as low, medium, and high solubility),
Kappa can be used to rank classification models; this was used in
recent Kaggle solubility challenge.313 Overall, Kappa-based
optimization is recommended for machine learning classifica-
tion models in toxicity prediction, particularly when the initial
model performance is strong.

Overall, the threshold chosen to generate definitive model
predictions from model-predicted probabilities is context-
dependent for each task. The final model should be chosen
based on the desired balance between the performance metric
most relevant for a particular use case.

To evaluate a regression model, it is essential to check at least
three aspects of the prediction: (a) correlation�how well the
model captures the relationship between the real target values
and predicted data, (b) goodness of fit�how well the model fits
the data overall and how much of the variance in the output
variable is explained by the model, and (c) dispersion of errors�
how close the predicted values are to the actual target values.
Distribution- and point-based metrics are generally used to
evaluate regression models.

The simplest way to evaluate a regression model is by
measuring correlation, which tells us about the strength and

direction of the relationship between the model’s predictions
and the actual values. A common metric for this purpose is the
Pearson correlation coefficient (r), which ranges from −1 to 1. If
r is close to 1, it indicates a strong positive relationship, meaning
that the model’s predictions closely match the actual target
values. A value close to 0 (or negative) suggests little to no linear
relationship or even an inverse relationship, indicating that the
model may not effectively capture the trend in the data. The
squared Pearson correlation (r2) measures the proportion of the
variance in the actual values that is predictable from the model’s
predictions. Another useful correlation metric is Spearman
correlation, which is used when we are more interested in the
ranking of values rather than their exact predicted values. Unlike
Pearson correlation, Spearman correlation focuses on the rank
order of the predictions compared to the actual values and is
thus less sensitive to outlier values. This makes Spearman
correlation useful for nonlinear relationships between predic-
tions and actual target values, and in practice it can be a very
useful metric to establish the ability to prioritize, e.g.,
compounds to be tested experimentally in an assay, where the
number of compounds to select is fixed (and only depends on
the ordered list of model output).

The second aspect of model evaluation is assessing the
goodness of fit, which tells us how well the regression model fits
the data points. There are multiple metrics commonly used to
evaluate goodness of fit such as coefficient of determination
(R2), coefficient of determination on regression through the
origin (Ro2), and modified R2 (Rm2 ).314,315 An R2 value closer to 1
indicates that the model explains a large percentage of the
variability in the data, suggesting a good fit. It is well established
that regression through the origin (Ro2) is of less significance to
predictive ML models, where we wish to compare observed
versus predicted values. Global metrics like R2 are often less
informative because they are not measures of the decisional
impact; often, errors near the decisional boundary are most
important instead of equally weighting everywhere. Alexander et
al. demonstrate that R2 (as defined in equation below), defined
as the proportion of total variability explained by the model (the
ratio of explained variability to total variability, subtracted from
unity), is practically useful, particularly when the goal is to
minimize residuals between model predictions and actual
values.316

=R
y y
y y

1
( )
( )

2
2

2

where y is the observed response variable, y is its mean, and ŷ is
the corresponding predicted value.

While r2 and R2 are sometimes equivalent, they are not always
the same. The key difference arises when the mean of the
model’s predictions does not match the mean of the real data. In
such cases, R2 will decrease because the model’s predictions are
biased, either systematically overestimating or underestimating
the targets. In contrast, r2 remains unaffected by this bias as it
only captures the strength of the linear relationship between the
predictions and targets. Therefore, r2 may still be high even if the
model’s predictions are consistently offset. Whether to prioritize
R2 or r2 depends on the goal of the model. If the primary interest
is in capturing the underlying trends without regard to
systematic bias, r2 may be more informative. However, if the
exact accuracy of predictions is critical, R2 is more appropriate as
it penalizes bias.
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While metrics like the coefficient of determination (R2) are
standard for evaluating how well a regression model captures the
overall trend and variance of the data distribution (measure of
distribution), Alexander et al. suggest that it is also important to
assess the accuracy of predictions at individual data points
(measure of dispersion).316 R2 measures how well the predicted
values replicate the variability of the true data but does not
detect point-wise deviations where predictions are systemati-
cally higher or lower than actual values.

To capture these point-wise deviations, point-based error
metrics are used that are, when it comes to anticipating the error
of a prediction in future use cases, at least as important as the
above distribution-based metrics. Studies often use Mean
Absolute Error (MAE), which measures the average magnitude
of the errors without considering their direction, offering a
straightforward measure of how much, on average, the
predictions deviate from the true values at each point.
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where for n predictions from a sample of n data points, Yi is the
observed value of the variable being predicted, and Ŷi is the
predicted value.

The most common metrics used is the Mean Squared Error
(MSE), which calculates the average of the squared differences
between predicted and actual values at each data point. A lower
MSE indicates that the model’s predictions are generally close to
the actual values on a point-by-point basis.

=
=

MSE
n

Y Y1
( )

i

n

i i
1

2

where for n predictions from a sample of n data points, Yi is the
observed value of the variable being predicted, and Ŷi is the
predicted value.

The Root-Mean-Square Error (RMSE) is the square root of
the MSE and provides an error measure in the same units as the
target variable, enhancing interpretability.
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where for n predictions from a sample of n data points, Yi is the
observed value of the variable being predicted, and Ŷi is the
predicted value.

In some regression tasks, it can be useful to evaluate model
performance using classification metrics by converting con-
tinuous targets into binary labels based on a threshold. For
instance, if the target values are bimodal or contain a small
fraction of extreme values, we can convert them into binary or
multiclass labels and compare the actual data to the predicted
labels. Also in case of data with large experimental error, such as
microsomal stability assays, categorical predictions based on a
regression model can be useful.317 Metrics such as accuracy,
precision, recall, and F1 score can then be used to assess the
model’s ability to correctly classify target values. This approach
is particularly helpful when the continuous target values are
noisy within each mode, and the primary focus is on accurately
making a binary decision: identifying high-risk or high-value
cases.

From the perspective of ML models in toxicity prediction, a
model with a low R2 may still be helpful in practical drug
discovery if the measure of dispersion, such as the Root-Mean-

Square Error (RMSE), is low and acceptable for the intended
use. For example, in vivo pharmacokinetic parameters are
organism-level data that are considered difficult to model using
chemical descriptors: models usually have a low R2.124,125 Yet,
such models where the RMSE is deemed within acceptable
thresholds are used internally in pharmaceutical companies. In
predictive in vivo PK property models, the number of
compounds predicted within 2- or 3-fold error (prediction
fold error) is a common evaluation metric.318 This level of ‘error’
is acceptable due to the significant inherent variability in
biological systems, as well as differences in the output variable
that span multiple orders of magnitude, meaning that even the
experimental data can exhibit substantial variability between
individuals, and predictions falling within a 2- to 3-fold range of
observed values are considered reasonable in PK prediction, as
the model’s performance aligns with the actual variability in the
data.319,320

Overall, we recommend measures of dispersion like RMSE
and Mean/Median Absolute Error (MAE) along with fit-to-
data-distribution metrics like (R2) as metrics in evaluating
toxicity models for real-world applications. (For a more detailed
of those aspects, see ref 33.) In addition, it is important to keep
in mind that the impact of experimental assay error should not
be overlooked in the pursuit of achieving the ‘best’ performance
and that model error needs to be seen in context of experimental
error. Once a model reaches the known theoretical accuracy
(and error) of the experimental method (the data from which
the model was built on), the model could be considered as good
as the underlying experiment.321 Striving for performance
beyond that point, on the same test set, may only reflect the
error and noise inherent in the data and hence lead to model
overfitting (which indeed seems to be the case for several
published models322).

■ RETROSPECTIVE MODEL VALIDATION
In order to optimize hyperparameters of models, as well as to
obtain an estimate of future performance, models must be
validated on compounds not seen during model training before
real-world use (see Box 2 for details on validation strategies).
Models are typically validated by splitting the data to create
train, validation and test sets (Figure 10), where the primary
purpose of the training set is to fit model parameters; the
validation set is used to optmise hyperparameters (however,
preoptimized hyperparameters can also suffer from over-
fitting323) and the test set is used to estimate future model
performance.

More specifically, cross-validation is often used to provide a
better performance estimate than that given by a single train-test
split and to estimate the uncertainty in this performance
estimate. Cross-validation (Figure 10a) involves dividing the
data set into multiple subsets and systematically training and
validating the model across different combinations of these
subsets.234 In each iteration, one subset of the data is used for
training, and the remaining subset of the data is used for testing.
Performance metrics are each averaged across splits to provide
an estimate of the model’s performance, and the variance of each
metric across splits is used to provide error bars for this
performance estimate. If there is no need to select and optimize
hyperparameters for an algorithm, then a cross-validation is
sufficient. However, when optimizing parameters, a simple
cross-validation often leads to an overestimation of model
performance.324 In any case, the caveat remains that perform-
ance of the model is still evaluated only on the chemistry
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contained in the test set, which may not represent future use
cases. Hence, nested cross-validation (Figure 10d) extends this
concept by incorporating an inner loop for hyperparameter
tuning (‘validation set’) and an outer loop for model
performance assessment (‘test set’). This approach aims to
prevent overfitting by ensuring that hyperparameter tuning does
not bias the model’s performance evaluation. Once a model has
been optimized with respect to hyperparameters, it is typically
retrained on all training data and validated on held-out data
retrospectively (Figure 10c). A held-out (‘external’) test set is
where a part of the original data set is reserved only for testing a
single time, ensuring that the model was never exposed to it
during prior steps (such as feature selection, model selection/
training, nested-cross validation, etc.). Holding out test
compounds from the same source data, however, means the
test data is being drawn from the same underlying distribution as
the training data, which can represent ‘data leakage’ (given that
similar compounds are present in training and test set) and lead
to an overestimation of model performance. If a model performs
similar across different folds of the (nested) cross-validation it
can be seen as ‘stable’, and if it performs well on a held-out test
set, the model can be considered reliable in the respective chemical
space and conditions covered by this test set (which may or may not
be predictive for future use cases, particularly if the training set
and test set contained highly similar compounds, allowing

information leakage, but future use cases do not). Given future
use cases are generally unknown, it is difficult to obtain a reliable
estimate of model performance for this situation.

There are different approaches for data splitting, which impact
how the training and test sets are formed.325 The simplest is
randomized data splitting, which assigns each data point
randomly to training or test sets. Although this often still
being used, it poses dangers: training data sets may differ in
distribution from the data seen during model deployment�for
example, the training set may contain clusters of compounds
from the same chemical series, whereas the data the model is
deployed on may include novel series�and thus other strategies
would more realistically reflect expected model performance in
real-world use.326−328 For instance, “scaffold splitting” groups
compounds based on their molecular scaffolds�the core
structures of molecules without side chains.326 By ensuring
that compounds with the same scaffold are all in either the
training or test set, metrics evaluated with this train-test split
measure the model’s ability to generalize to new chemical
scaffolds not seen during training. While this is conceptually
valid, ‘new chemical scaffolds’ may still be more similar, or less
similar, in the test set compared to the training set relative to
future use cases. Related approaches split data based on other
methods of clustering molecules based on various measures of
similarity to avoid information leakage from training to test. A
more stringent variant of data split is leave-one-cluster-out
(Figure 10b) validation, where each cluster forms a separate test
split. In effect, this splitting strategy carves out whole areas of
chemical space for the test set. A temporal (time) split, on the
other hand, involves dividing the data based on the time of data
acquisition or compound synthesis. The model is trained on
older data and tested on newer data, simulating real-world
scenarios where models are applied to future compounds,
designed based on measured properties of past compounds.328

This method evaluates the model’s predictive performance over
time and can reveal if model performance suffers due to the
underlying data distribution changing over time. This approach
is meant to measure model performance on ‘new project
compounds’; however, given that ‘new project compounds’ may
still be located in very different areas of chemical space, this may
or may not resemble future applications of the model. Step-
forward splits are another approach of model validation, where
data are split based on an ordering based on a molecular
property, which could be a physicochemical property like logD
or molecular weight. Molecules falling within some range of the
property (often the highest or lowest values) are held out from
training and are used for testing.327,329 This strategy mimics the
application of a model to data that may have different properties
to the training set (for example, molecules in different ranges of
physicochemical space) and can thus help in understanding how
the model will perform in practical, forward-looking applica-
tions. It can be summarized that various data splitting strategies
for model training exist; but due to the size of chemical space
and unknown future use cases, obtaining a reliable model
performance estimate is difficult in practice.

■ PROSPECTIVEMODEL VALIDATIONON RELEVANT
CHEMICAL SPACE

While the above retrospective data splitting strategies can give
some estimate of performance in future use cases, the real proof
of applicability of a model rests in prospective applications; after
all, it is always easier to predict the past, than to predict the
future. Prospective validation involves testing the model’s

Chart Box 2
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predictions against new, unseen data on future projects or
compounds, to confirm their reliability in the chemical space
required for the project. While some of such cases are
represented to model applications in true future projects, also
some ‘mixed’ approaches are possible. A posthoc test set (Figure
10e) consists of validation of predictions for molecules (say,
newly synthesized compounds) that the model has never
encountered during any stage of its development. These
molecules should be kept hidden from the model developers
until the final evaluation phase. An out-of-distribution validation
(Figure 10f) includes compounds that are significantly different
from the training data distribution�such as new classes of
compounds, novel scaffolds, or data obtained under different
experimental conditions. The difference to retrospective
validation is here fluent in a way, and artificially ‘difficult’
retrospective cases can be more difficult for the model to handle
than, e.g., close analogues in a true prospective set. Finally,
prospective validation on future projects (Figure 10g) would
involve applying the model to predict outcomes in future
projects or compounds synthesized after the model’s develop-
ment, to test the model’s predictive power in live scenarios,
reflecting its utility in actual practice. And this, in combination
with what is described in the next pillar, is actually what matters
in reality: Not whether a validation is ‘retrospective’ or
‘prospective’, but rather whether we can improve decision

making (which of course will then usually be in the prospective
domain).

The overall process of model training and validation is
explained by using a hypothetical case here: Take for example, a
model aiming to predict mitochondrial membrane depolariza-
tion, which will be applied in a discovery project for a novel class
of chemical compounds, synthetic cannabinoids. An ML model
could have been trained and internally validated using nested
cross-validation on a data set for small molecules and associated
mitochondrial membrane depolarization readouts (a toxicity
measure); this set of compounds could include some known
cannabinoids. The nesting can leave one-cluster-out to ensure
that the optimization results in a model that can generalize
across different subclasses of compounds, including cannabi-
noids. Once optimized, the fitted model should be validated
retrospectively using a held-out test set, including some novel
synthetic cannabinoids that were not part of the training data
(out-of-distribution) to assess its predictive accuracy in the
particular chemical space. If the performance is acceptable for
practical application, the model could be applied to a drug
discovery project targeting the development of cannabinoid-
based therapeutics. A prospective validation would be attempted
against experimental data from the new cannabinoid com-
pounds developed during the project. Such prospective

Figure 10.Comparative overview of model validation techniques for ML models in chemical space for toxicity prediction: Internal validation methods
include (a) cross-validation, ensuring model reliability through repetitive training and testing on different data segments, (b) leave-one-cluster-out,
assessing generalization across similar compound groups, (c) held-out test set, evaluating unseen data held-out from the data set; and (d) nested cross-
validation, optimizing model parameters while preventing overfitting. External validation techniques comprise (e) a posthoc test set, providing an
unbiased assessment of completely new experimental data; (f) an out-of-distribution set, testing model robustness against novel compound
distributions such as new class compounds; and (g) prospective validation, confirming real-world applicability on future projects. Note: This figure
offers an oversimplified representation of chemical space. While the 2D space can be visualized on two axes, chemical space is multidimensional,
underpopulated, and behaves differently in every area. Thus, validation in chemical space is more complex than visualized here, and this figure is
intended for illustrative purposes only.
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validation assesses whether the models perform as expected in
practical project applications.

Once validated, a model can be retrained on all available data,
including the test data, before it is deployed again. This should
expand the model’s coverage of the chemical space since more
data are included for model training. Given that the test set
typically represents a small addition to a much larger training
data set and the optimized model parameters remain the same as
the before, the inclusion of the test data in the retraining now is
unlikely to significantly alter predictions in other areas of the
chemical space. Instead, it primarily enhances the model’s
accuracy within the newly added chemical space. On the other
hand, using the test data in training the final deployed model
means that further performance evaluation of the model is
difficult unless new test data becomes available. Thus, as new
data become available from experiments, the model is retrained,
re-evaluated, updated if suitable, and deployed for use. This
process is particularly important in the case of project work,
where information about the chemical space of current interest
can greatly increase model performance. For an example of
implementation of suitable validation protocols, see OCHEM
(https://ochem.eu), a platform developed more than 15 years
ago.

■ DEFINING THE APPLICABILITY DOMAIN
Optimizing a model for a given evaluation metric needs to be
complemented with a measure how well the model is able to
predict for future uses cases - similar to experiments, which
result, e.g., in a mean and an associated standard deviation,
predictions need to come with a prediction value, and an
associated confidence measure into this prediction.330 Models
must, therefore, balance optimizing the performance metric with
the so-called ‘Applicability Domain’ (AD). The AD defines the
range of input/output values or conditions under which the
model’s predictions are considered reliable and valid. It
essentially sets the boundaries within which the model can be
expected to perform accurately (to various quantitative
degrees), based on the data it was trained on and the model
training and validation process used. Models trained on a smaller
data set of more project-relevant compounds may outperform
those trained on larger data sets; this was observed in the context
of virtual screening, where removing half of the molecules with
the lowest applicability scores indeed improved performance.331

One approach to evaluating performance with respect to the
applicability domain involves using test sets split into distance
bins (where distance refers to structural similarity to the training
compounds) to monitor performance. Furthermore, bins
representing chemical space with poor performance suggest
new experiments, whose data might improve the model
performance in that space. Various alternatives have been
explored to define AD in chemical space (Table 8), each catering
to particular scenarios.40 It should be noted that while a large
number of such approaches exist, given the size of chemical
space and that it behaves very differently locally, it is very
difficult to come with reliable error (and applicability domain)
estimates in practice.

■ PILLAR 5: TRANSLATING TO DECISION-MAKING
As we have seen, improving ML models for molecular toxicity
prediction relies on data, chemical representation, model
architectures, and validation. However, improving drug
discovery (as a process) involves translating the outcomes of T
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ML models into actionable follow-up decisions, such as
prioritization of one compound over another, which assay to
run next, etc.300 (Figure 11; see Box 3 for critical takeaways on

moving ML predictions toward actionable drug discovery
decisions). It can be seen that a machine learning model (and
its application) is only a tool, an ability�when used, it is
embedded into a context, and that context is frequently
insufficiently considered when only focusing on ‘model metrics’.
However, a machine learning model is not a purpose in itself; the
purpose of a model is to be applied in a context.

Many ML models for toxicity in the industry are used as an
alert for potential risk or for prioritization and not necessarily as
a go/no-go decision. Those decisions depend highly on PK/
ADME, dose, exposure, etc., conditions that an ML model
usually does not capture. In terms of machine learning, this

represents an ‘underspecification’ of the task the model is trained
on338�and hence the model output cannot be directly
translated to decision making. For example, acetaminophen
(paracetamol) is generally safe at therapeutic doses but becomes
toxic at higher doses due to its metabolism into a harmful
compound called N-acetyl-p-benzoquinone imine (NAPQI).339

Machine learning models predicting toxicity solely on the basis
of molecular structure might not flag this risk because they rarely
account for dose-dependent effects, metabolic pathways, or
individual variations in drug metabolism (PK/ADME factors).
PK parameters are needed for human-relevant decision making
in safety.340 For example, predicting in vivo pharmacokinetic
parameters (which cover drug absorption, distribution, and
clearance in humans) could reveal unsuitable drug character-
istics (such as bioavailability), informing the next iteration of
drug design as part of a Design−Make−Test−Analyze cycle to
optimize compounds in development.341,342 Overall, ML
models for efficacy, toxicity, and PK/ADME can only translate
to human-relevant decision-making if all three are considered in
parallel.

To a small extent computational methods have already
impacted regulatory processes, such as the adoption of the ICH
M7 guidelines (International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for Human
Use).343 These guidelines provide a framework for using
computational methods, including ML, to predict the mutagenic
potential of pharmaceutical impurities. The ICH M7 guidelines
emphasize the importance of (Q)SAR (Quantitative Structure−
Activity Relationship) methodologies, recommending two
complementary approaches for this purpose, namely, an expert
rule-based system and a statistics-based system. Expert rule-
based systems apply established toxicological rules to identify
certain molecular fragments, known as structural alerts,
associated with mutagenicity, while statistical (ML) models
leverage large data sets to detect patterns and predict outcomes.
Where both methodologies indicate no structural alerts for

Figure 11. Influence on ML predictions in hypothetical project contexts depends on the availability of assays and validation on a subset of compounds.
Interpreting and understanding predictions from ML models.

Chart Box 3
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mutagenicity, the guidelines deem the negative in silico results as
sufficient evidence to conclude that the impurity is not of
mutagenic concern, eliminating the need for further exper-
imental testing. This is one concrete example of computational
toxicology replacing laboratory experiments, which, however, is
limited to a relatively narrow range: to impurities (so compounds
present at relatively low concentration), in the genotoxicity area,
and only when two methods are employed in parallel. In another
example, French health authorities’ request for toxicity data on
cyamemazine was satisfactorily answered with an in silico
assessment of target organ toxicity.344 The in silico models
used for hazard assessment covered toxicity end points such as
mutagenicity, hepatotoxicity, nephrotoxicity, cardiotoxicity, etc.,
including two complementary models, namely expert alert and
statistical QSAR models. It can be seen that model predictions
can contribute to decision making, but having a model does not
represent ‘having the answer’ by itself.

Machine learning models are increasingly being applied in
real-world projects in drug discovery to uncover mechanisms of
action, predict toxicity, and assess off-target risks early in the
development process. Predictive assays for hepatotoxicity and
cardiotoxicity have also been an essential part of the early
toxicology strategy.345 Recently, a virtual enhanced cross-screen
panel (vEXP) used ML models to predict 67 off-target activities,
aiming to provide early warnings about potential adverse drug
reactions.346 The authors reported that the vEXP panel
effectively identified potential off-target activities, aiding in the
early prioritization and risk assessment of drug candidates�for
targets with well-balanced data sets and sufficient data points,
the models demonstrated strong predictive performance, many
exceeding the thresholds set for acceptable performance (e.g.,
Kappa ≥ 0.4, ROC-AUC ≥ 0.7). The authors suggested that the
vEXP panel be integrated into various stages of the drug
discovery process�to rank hit compounds based on their

predicted off-target profiles, identify systematic risks associated
with specific chemical series or functional groups, and ensure
that late-stage optimization efforts do not inadvertently
introduce new off-target activities. This example represents a
case where computational models can complement experimen-
tal approaches to achieve higher ef f iciency as a result.

Extending beyond animal experiments, Next Generation Risk
Assessment (NGRA) combines in silico models and in vitro
assays to evaluate chemical safety without relying on animal
data. For instance, an industry study on coumarin in cosmetic
products integrated mathematical models, in vitro NAMs, an in
vitro cell stress panel, high-throughput transcriptomics, and in
silico alerts for genotoxicity.347 The authors demonstrated that in
silico methods can complement experimental data to provide
sufficient evidence for safety evaluations in a regulatory context.
Similarly, Ouedraogo et al. used a 10-step framework of read-
across and NAMs with propylparaben, demonstrating the
practical application of integrating exposure assessment, in silico
methods, and bioactivity data to inform reproductive toxicity
alerts.348 Overall, these approaches highlight the value of
combining multiple data sources and methodologies to enhance
the accuracy, efficiency, and regulatory acceptance of risk
assessments. Overall, in silico models used in drug (or here
compound) discovery, development, and safety assessment can,
to some extent, reduce the experimental burden in real-world
settings.

A final key to improving the translation of ML models in the
real world involves a suitable understanding of the use case and
user, hence setting up a system that enables adoption in real-
world projects. Aspects such as understanding the need for
retraining (on project-specific data), the type of model
developed (regression vs two/three/four-class classification),
the output of prediction confidence (and potentially a nearest
neighbor/concrete experimental data point for the user to gain

Table 9. Open-Source or Freely Accessible ML Models for Toxicity Prediction, with Server or Local Implementation

Tool Name Web Site Description Reference

ADMETLab 3.0 admetlab3.scbdd.com Predicts ADME-Tox properties using advanced machine learning models 350

QSARdb qsardb.org Models for human health effects, toxicokinetics, etc. for evaluating chemical and
environmental risk

351

OCHEM ochem.eu Models with environmental and health related end-points, Tox21, etc. 352

CPSign github.com/arosbio/cpsign Conformal prediction for valid prediction intervals on a per-compound basis 302

Danish QSAR
Database

qsar.food.dtu.dk Database of QSAR models for predicting toxicological end points, especially for
regulatory purposes

353

DILIPredictor broad.io/DILIPredictor Predicts human and animal-relevant liver injury and proxy liver injury end points 354

EPI Suite epa.gov/tsca-screening-tools/epi-suitetm-
estimation-program-interface

A suite of physical/chemical property and environmental fate estimation
programs

355

EMolTox xundrug.cn/moltox Web Server for the prediction of toxicity for safety analysis in drug development 356

OECD QSAR
Toolbox

qsartoolbox.org Provides tools for grouping chemicals into categories and predicting their
toxicological properties

357

OPERA github.com/NIEHS/OPERA A suite of QSAR models to predict physicochemical properties, environmental
fate, ADME and toxicity end points

238

pkCSM biosig.lab.uq.edu.au/pkcsm/prediction Predicts pharmacokinetic properties of small molecules using graph-based
signatures

358

PKSmart broad.io/PKSmart Predicts human and animal pharmacokinetic parameters 125

ProTox 3.0 tox.charite.de/protox3/ Virtual lab for predicting toxicities of small molecules using various predictive
models

359

SwissADME swissadme.ch Predicts ADME properties of small molecules using free web tools provided by
the Swiss Institute of Bioinformatics

360

Toxtree toxtree.sourceforge.net Open-source application for the estimation of toxic hazards based on decision
tree approaches

361

VEGA-QSAR vegahub.eu/portfolio-item/vega-qsar Provides models for predicting toxicological end points using Quantitative
Structure−Activity Relationship (QSAR) models

362

VenomPred 2.0 mmvsl.it/wp/venompred2 Evaluate the toxicological profile of small molecules and features that contribute
to predictions to derive a structural toxicophore

363
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trust into the model), suitable interfaces with databases and
other software systems, design of the user interface, run time, etc.
are important considerations in creating an impactful system in
practice.349 Several publicly available ADMET models are
commonly used (Table 9), some with web-based portals and a
graphical user interface. Their ability to show feature
importance, structural alerts, and other interpretive insights,
where present, enhances their transparency and usability. The
reader is encouraged to use these (and other available) tools to
gain hands-on experience, and to see which approaches are
useful in the context of their own work.

Interpreting and hence, to an extent, ‘understanding’ ML
models, in terms of their underlying basis for predictions, can
make predictions more trustworthy and help detect biases in the
model, as well as ensure the model recovers previous knowledge
(e.g., known structural alerts). Suitable feature spaces and
modeling architectures need to be used to interpret models,
which can lead to novel understanding of the model (and
problem) at hand. Feature importance measures (Table 10) can
be used to estimate the contribution of individual features,
particularly where the features are interpretable, e.g., specific
molecular targets, such as proteins, or chemical substructures
associated with toxicity, etc. For example, mutagenicity and skin
sensitization are often concerns in drug development that can be
interpreted from chemical features. Specific structural alerts�
such as nitroaromatic groups for mutagenicity,364 or electro-
philic groups like α,β-unsaturated carbonyls (Michael accept-
ors) for skin sensitization365�are associated with these
toxicities; predictive models can identify these fragments and
enable medicinal chemists to modify molecules by eliminating
or altering these groups to reduce the risk (although modifying a
few fragments with the highest contribution in the model does
not necessarily resolve toxicity completely354,366).

However, interpretations are not always straightforward,
especially when it comes to predictions based on the chemical
structure. Misinterpretations are common for data sets with high
bias in chemical space, which is often the case due to project,
synthesis, and analogue bias, etc. For example, a previous study
by one of the authors found that sugar rings were associated with
the bitterness of compounds, a result that does not make sense at
face value. In this case, the confounding factor was that natural
products are frequently glycosylated and tend to be bitter. The
model then proposed this confounding factor (and bias) in the
model as a correlation when it was not, in fact, the causation.367

This example shows that while feature importance measures can
provide actionable insights, their application in real-world drug
discovery must account for potential biases in the input data.

Mechanistic insights can also be gained by interpreting ML
models. For example, fuzzy rules are a set of “if−then”
statements based on fuzzy logic.368 Unlike traditional binary
logic that deals strictly with true or false values, fuzzy logic allows
for reasoning with uncertain or imprecise information by
accommodating degrees of truth. For example, a rule might
state, “If the daily dose of an oral medication is high and the
lipophilicity is high, then the probability of hepatotoxicity is
high”,369 where the term “high” is not an exact value but a
linguistic variable represented by membership functions in a
fuzzy set. After training an ML model, fuzzy set rules can be
developed based on how certain input features influence the
model’s predictions. For example, converting decision tree rules
or clustering results into fuzzy rules can make them more
interpretable. For example, Friederichs et al. were able to cluster
90 environmental compounds using fuzzy clustering based on

physicochemical parameters, reasoning why compounds in
specific clusters exhibit aquatic toxicity (volatility, hydrolysis,
etc.).370 Fuzzy rule sets are usually based on well-defined and
interpretable variables (such as molecular weight, logD, etc.).
They can help elucidate the fundamental properties contributing
to toxicity and guide the design of safer compounds, where
interpretability from a medicinal chemistry perspective drives
decision-making.371−373

When interpreting model predictions, however, correlation
must not be confused with causation; the most-contributing
features used by the model are only meaningful if they represent
the underlying cause (which is often unknown), and in practice,
feature importance often suffers from a ‘long tail’ distribution,
where a large number of features are associated with a
prediction; this complicates interpretation (many features
contribute ‘somewhat’ to the end point the model predicts).
Moreover, feature importance is a local property for nonlinear
models, while global for linear models. Combining modeling
and computational analysis with expert knowledge is, hence, key.
For example, pathway enrichment analysis involves mapping
important features, such as genes and proteins, to known
biological pathways using tools like KEGG, Reactome or
Ingenuity Pathways Analysis (IPA); for example, Antazak et al.
identified 21 molecular pathways differentially modulated in
response to nephrotoxic vs nontoxic compounds.382 They
identified the three main functional categories of pathways for
nephrotoxicity�metabolic pathways (e.g., Glycerophospholi-
pid metabolism), signaling pathways (e.g., Parkinson’s disease),
and cell communication pathways (e.g., cell communication).
Network analysis can extend mechanistic analysis by construct-
ing and analyzing biological networks, such as Protein−Protein
Interaction (PPI) networks, to pinpoint key nodes and modules.
For example, IPA has very specific features to evaluate protein−
protein interactions, such as upstream regulator analysis,
mechanistic networks, causal network analysis, and downstream
effects analysis.383 A study using IPA revealed a novel antitumor
mechanism for MK886, a leukotriene antagonist, involving
cytoskeleton-induced alteration of chromatin structure, reveal-
ing unknown aspects of the action and safety.384 Another study
used PPI networks to determine targets for cardiac disorders and
found protein ERBB4 interacting with known drug targets.385

Although ERBB4 was not a known drug target for cardiac failure
at the time (according to Huang et al.385), there is considerable
work now on using ERBB4 agonists for treating heart failure.386

Overall, pathway enrichment analysis and PPI networks can
highlight important proteins or groups of proteins that may
contribute to specific properties, yielding a deeper under-
standing of the complex biological interactions involved. In the
cases discussed here, prior knowledge (in terms of biological
pathways) was combined with data (from the models) to arrive
at an interpretable model output.

Another related approach to interpretable predictions is to use
causal and mathematical mechanistic models to directly
establish cause-and-effect relationships rather than correlations
captured by ML models. Causal inference methods have been
applied directly to transcriptional data and PPI networks to
distinguish correlation from causation and infer potential
mechanisms of actions that drive toxicity. For example, these
methods were shown to recapitulate specific pathways down-
stream of the molecular targets, providing a systems-level view of
the drug’s mechanism.387,388
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Overall, understanding the features involved in the
predictions of ML models can provide both insight and
confidence into the predictions being made.

■ PHARMACOKINETICS IN DECISION-MAKING
Toxicity is not a simple ‘yes’ or ‘no’ question�even water can be
toxic at ‘too high a dose’.389 Concentration and exposure (and
PK in general) are absolutely critical for assessing safety and
toxicity but are relatively neglected in the ML community.

Pharmacokinetics is a critical aspect of drug development and
clinical decision-making because it provides detailed insights
into how a drug is absorbed, distributed, metabolized, and
eliminated within the body.390 This information is essential for
determining the optimal dosage and administration schedule to
achieve therapeutic efficacy without causing harm. By studying
pharmacokinetics, researchers can establish the time it takes for
a drug to reach therapeutic levels, how long it remains effective,
and the dynamics of its elimination. This knowledge ensures that
drug regimens are optimized for maximum benefit while
minimizing the risk of adverse effects. Analogous considerations
apply to compound toxicity.

Pharmacokinetics also plays a central role in balancing efficacy
and safety by informing the therapeutic index (TI),340 a critical
parameter derived from pharmacokinetics and pharmacody-
namic (PD) studies and defined as the ratio between the toxic
dose and the effective dose of a drug:

=TI
TD
ED

50
50

where TD50 is the dose that produces toxicity in 50% of the
population, and ED50 is the dose that is effective in 50% of the
population.340 A higher TI indicates a greater margin of safety
between therapeutic and toxic doses. Accurate PK modeling
helps to determine the TI more precisely, aiding in optimizing
dosing regimens to maximize efficacy while minimizing toxicity.

While physiologically based Pharmacokinetics (PBPK)
models have been used in drug discovery for a number of
years, they require tailoring to the particular compound
properties at hand. On the other hand, in recent years
approaches have become popular to predict in vivo PK directly
based on chemical structure,391 owing to the availability of
suitable data sets. Machine Learning models have recently been
integrated with mechanistic models to enhance the predictive
accuracy. Tools that predict pharmacokinetics parameters using
ML algorithms, such as PKSmart,125 can process large data sets
to predict the pharmacokinetics parameters that can then be
used as input parameters to a compartment model.392−395 This
hybrid approach combines the strengths of data-driven ML
models with the interpretability of the mechanistic models.

■ OPTIMIZING ML STRATEGIES IN VARIOUS STAGES
OF DRUG DISCOVERY

Using ML for QSAR/QSPR models is common practice in drug
discovery, where finding the right balance between cost, speed,
and predictivity of a method at a given stage of the drug
discovery process is critical (see Table 11). It is important to
recognize that different industries may adopt varying approaches
to using ML models, both within drug discovery and
development and in other industries such as consumer goods
or agrochemistry. In these contexts, different properties of data
sets, representations, models, validation methods, and evalua-
tion metrics may hold varying degrees of importance. Some
projects might favor a balanced approach between recall and
precision, while in other cases one or the other might be more
important.396 Others may tailor their model optimization
strategies (or loss functions) to particular aspects of model
performance, specific therapeutic areas, the types of compounds
being studied, or the technologies employed.32,397 A typical use
of models along the early and late drug discovery stages follows.

For early stage virtual screening of compounds across a range
of targets, discovery phases are exploratory, often targeting novel
or less well-understood pathways. Given that on-target effects
are crucial for compound selection (after a target has been
selected), ideal ML models would find many hits with a high
precision (i.e., with a high confidence that the compounds
selected are indeed hitting the target the project is working
on).398 On the other hand, from a toxicity prediction
perspective, early discovery phases also need to minimize
compounds incorrectly predicted as nontoxic (‘false negatives’,
where toxicity is seen as the ‘positive’ label, from the modeling
perspective).345 The above decisions depend on the project
context�for example, when the project aims at conditions with
limited patient survival (e.g., advance stage oncology or rare
diseases), toxicity concerns may not be a major roadblock.399

Instead, other factors such as the compound’s pharmacokinetic
profile (if distribution to target organs such as the brain is
required) may take center stage. One possible strategy for using
data and machine learning in a drug discovery project is
visualized in Box 4. Variations need to be applied according to
project needs in a given concrete situation.

Me-too/Me-better drugs share the same mechanism of action
or target as the existing drugs. Projects focused on identifying
me-too drugs generally have a lower human safety risk profile
because their mechanisms of action and on-target toxicity are
often already known. Still, off-target toxicity may present
challenges, where the adverse reactions are not caused by the
therapeutic class.400 The opportunity also lies in finding
incremental improvements in therapeutic action and/or safety.
Projects focusing on me-too/follow-on drugs usually demand
fewer resources to develop401 and thus ML models could be
optimized on minimizing compounds incorrectly predicted as
inactive (false negatives) among the known target (in line with

Table 11. Different Priorities and Criteria Are Used in ML Models to Balance Efficacy, Toxicity, and Selection (e.g., on-target
activity, efficacy) or Deselection (e.g., toxicity alert models) in Early- and Late-Stage Drug Discovery

Focus Early Stage Exploratory/Discovery (usually qualitative)
Late Stage Refinement/Development (usually quantitative: exposure, PK,

etc.)

ML models for selection
(e.g., on-target activity,
efficacy)

Broad selection, high recall. Include as many potential
compounds fitting the target product profile as possible.

Narrow selection, high specificity. Only compounds that meet strict efficacy
and safety criteria are selected for further development.

ML models for deselection
(e.g., toxicity alert
models)

Low impact of compounds incorrectly predicted as toxic
(false positives). It is acceptable to have some false
positive predictions.

High precision is desired in ML models to minimize compounds incorrectly
predicted as nontoxic (false negatives), avoiding resource wastage on
failing compounds.
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the practice of revisiting prior screening data and ‘rescuing’ false
negatives).400 To ensure competitiveness in the market, these
projects would likely want to find all possible molecules in the
early stage (high recall), advancing the most promising ones to
development and keeping the others as backup in case the
molecule fails in the preclinical or clinical stage.402,403

By contrast, first-in-class drugs have a new and unique
mechanism of action that could yield greater efficacy than
existing treatments, but carry a higher risk due to unproven
mechanisms that may not work as expected, or may have
unforeseen side effects or consequences.404 That said, a study by
Health Canada considering drugs that were approved and later
withdrawn found that first-in-class drugs do not exhibit a higher
concern for safety compared to nonfirst-in-class drugs.405

Projects aiming for a first-in-class drug also offer higher rewards,
with market exclusivity initially, and in later years increased
market share when other pharmaceuticals enter the space (even
when new molecules may have benefits).401 First-in-class drugs
have limited or no data in the chemical space and therefore rely
more on chemical space exploration. ML models employed in
early discovery would ideally need to rank compounds with the
desired target profile (efficacy) and low toxicity (at human
exposure levels) for experimental validation.306

In the early screening paradigm, in vitro end points are
relatively inexpensive to test; lead compounds that are predicted
positive could be screened in those assays to detect false
positives. False negatives may not get tested as they were
deemed “safe” and carried forward an unidentified liability. ML
models thus need to have a lower tolerance for false negatives;
we would like to flag compounds if they are toxic. As a project
progresses to late-stage discovery, the focus shifts to precision to
ensure that only the most promising, efficacious, and safe
compounds are pursued from the pool of candidates.

In summary, to translate the benefits of toxicity models to
decision-making, they must consider a number of aspects in the
context of the project-relevant data, suitable representations,
proper validation, reliable interpretation.127 Given the complex-
ity of the task, the lack of data in many domains, and the
variability of the biological systems many end points are
measured in, it is not trivial to get all of those aspects right.

■ CONCLUSION
This review summarizes key challenges and considerations in
translating machine learning models into decision-making tools
for real-world drug discovery projects, in particular, related to
compound toxicity and safety. This includes making choices
about data, modeling, validation, model metrics, and applying
the model thus obtained to the process of drug discovery. We
hope that the reader finds this review useful and that it helps this
translation from concept to practice.
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